智能大模型技术作为智能产业与新质生产力的典型代表,正掀起人类社会变革的新浪潮,并加速推动科学研究范式的转变,在人工智能驱动的科学研究(AI for Science,AI4S)中起着越来越重要的作用,推动以“三个世界、三种技术、三类科学家、三...智能大模型技术作为智能产业与新质生产力的典型代表,正掀起人类社会变革的新浪潮,并加速推动科学研究范式的转变,在人工智能驱动的科学研究(AI for Science,AI4S)中起着越来越重要的作用,推动以“三个世界、三种技术、三类科学家、三种模式”为特点的平行科学新范式的形成。从虚实互动之平行智能的角度看,大模型技术在数学、生物学、健康与医学、化学、材料科学和天文学等领域都取得了一定的成绩。未来应基于平行科学的“三个世界”,利用“三类知识”,整合“三类科学家”,构建服务于AI4S研究的智能生态系统,特别是联邦生态系统的基本框架。展开更多
This study explores the capabilities of ChatGPT, specifically in relation to consciousness and its performance in the Turing Test. The article begins by examining the diverse perspectives among both the cognitive and ...This study explores the capabilities of ChatGPT, specifically in relation to consciousness and its performance in the Turing Test. The article begins by examining the diverse perspectives among both the cognitive and AI researchers regarding ChatGPT’s ability to pass the Turing Test. It introduces a hierarchical categorization of the test versions, suggesting that ChatGPT approaches success in the test, albeit primarily with na?ve users. Expert users, conversely, can easily identify its limitations. The paper presents various theories of consciousness, with a particular focus on the Integrated Information Theory proposed by Tononi. This theory serves as the framework for assessing ChatGPT’s level of consciousness. Through an evaluation based on the five axioms and theorems of IIT, the study finds that ChatGPT surpasses previous AI systems in certain aspects;however, ChatGPT significantly falls short of achieving a level of consciousness, particularly when compared to biological sentient beings. The paper concludes by emphasizing the importance of recognizing ChatGPT and similar generative AI models as highly advanced and intelligent tools, yet distinctly lacking the consciousness attributes found in advanced living organisms.展开更多
近年来,人工智能(AI)在前沿科技领域取得了诸如AlphaFold2、核聚变智能控制、新冠药物设计等诸多令人瞩目成果,表明AI for Science正在成为一种新的研究范式。实现智能时代的基础科学源头创新及其下游重大技术创新,需破解2个方面的核心...近年来,人工智能(AI)在前沿科技领域取得了诸如AlphaFold2、核聚变智能控制、新冠药物设计等诸多令人瞩目成果,表明AI for Science正在成为一种新的研究范式。实现智能时代的基础科学源头创新及其下游重大技术创新,需破解2个方面的核心问题:(1)如何利用新一代AI(特别是生成式AI及大模型)的通用性和创造性推动新范式的形成;(2)如何利用AI实现对传统科学设施的赋能与改造。文章提出一种智能化科学设施的建设构想,兼顾“高度智能化的科学新设施”和“AI赋能已有科学大设施”2个层面的需求,构筑AI for Science的科学设施体系,形成科学领域大模型、生成式模拟与反演、自主智能无人实验及大规模可信科研协作等创新功能,加速重大科学发现、变革性物质合成,以及重大工程技术应用。展开更多
文摘智能大模型技术作为智能产业与新质生产力的典型代表,正掀起人类社会变革的新浪潮,并加速推动科学研究范式的转变,在人工智能驱动的科学研究(AI for Science,AI4S)中起着越来越重要的作用,推动以“三个世界、三种技术、三类科学家、三种模式”为特点的平行科学新范式的形成。从虚实互动之平行智能的角度看,大模型技术在数学、生物学、健康与医学、化学、材料科学和天文学等领域都取得了一定的成绩。未来应基于平行科学的“三个世界”,利用“三类知识”,整合“三类科学家”,构建服务于AI4S研究的智能生态系统,特别是联邦生态系统的基本框架。
文摘This study explores the capabilities of ChatGPT, specifically in relation to consciousness and its performance in the Turing Test. The article begins by examining the diverse perspectives among both the cognitive and AI researchers regarding ChatGPT’s ability to pass the Turing Test. It introduces a hierarchical categorization of the test versions, suggesting that ChatGPT approaches success in the test, albeit primarily with na?ve users. Expert users, conversely, can easily identify its limitations. The paper presents various theories of consciousness, with a particular focus on the Integrated Information Theory proposed by Tononi. This theory serves as the framework for assessing ChatGPT’s level of consciousness. Through an evaluation based on the five axioms and theorems of IIT, the study finds that ChatGPT surpasses previous AI systems in certain aspects;however, ChatGPT significantly falls short of achieving a level of consciousness, particularly when compared to biological sentient beings. The paper concludes by emphasizing the importance of recognizing ChatGPT and similar generative AI models as highly advanced and intelligent tools, yet distinctly lacking the consciousness attributes found in advanced living organisms.
文摘近年来,人工智能(AI)在前沿科技领域取得了诸如AlphaFold2、核聚变智能控制、新冠药物设计等诸多令人瞩目成果,表明AI for Science正在成为一种新的研究范式。实现智能时代的基础科学源头创新及其下游重大技术创新,需破解2个方面的核心问题:(1)如何利用新一代AI(特别是生成式AI及大模型)的通用性和创造性推动新范式的形成;(2)如何利用AI实现对传统科学设施的赋能与改造。文章提出一种智能化科学设施的建设构想,兼顾“高度智能化的科学新设施”和“AI赋能已有科学大设施”2个层面的需求,构筑AI for Science的科学设施体系,形成科学领域大模型、生成式模拟与反演、自主智能无人实验及大规模可信科研协作等创新功能,加速重大科学发现、变革性物质合成,以及重大工程技术应用。