期刊文献+
共找到1,793篇文章
< 1 2 90 >
每页显示 20 50 100
Failure mechanism and safety control technology of a composite strata roadway in deep and soft rock masses:a case study
1
作者 ZHAO Chengwei ZHOU Hui +3 位作者 SUN Xiaoming ZHANG Yong MIAO Chengyu WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2427-2444,共18页
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe... The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways. 展开更多
关键词 3DEC Composite strata roadway soft rock NPR bolt and cable Asymmetric large deformation
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
2
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
Surrounding Rock Control Technology of Strong Dynamic Pressure Roadway in Hudi Coal Industry
3
作者 Yixue Jia 《World Journal of Engineering and Technology》 2024年第2期362-372,共11页
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i... Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions. 展开更多
关键词 Deep roadway Combined support Surrounding rock Control soft rock roadway
下载PDF
Bolt-grouting combined support technology in deep soft rock roadway 被引量:12
4
作者 Chen Yanlong Meng Qingbin +2 位作者 Xu Guang Wu Haoshuai Zhang Guimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期777-785,共9页
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined... Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed. 展开更多
关键词 Deep soft rock roadway Bolt-grouting support Numerical simulation Similar material simulation High stress
下载PDF
Application of a combined supporting technology with U-shaped steel support and anchor-grouting to surrounding soft rock reinforcement in roadway 被引量:17
5
作者 王辉 郑朋强 +1 位作者 赵文娟 田洪铭 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1240-1250,共11页
Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not on... Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively. 展开更多
关键词 soft rock roadway rheological effect supporting technology numerical simulation REINFORCEMENT
下载PDF
Influence of dynamic pressure on deep underground soft rock roadway support and its application 被引量:4
6
作者 Meng Qingbin Han Lijun +4 位作者 Chen Yanlong Fan Jiadong Wen Shengyong Yu Liyuan Li Hao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期903-912,共10页
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist... Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits. 展开更多
关键词 Deep soft rock roadway Dynamic pressure impact Similarity model test Combined support Ground pressure monitoring
下载PDF
An experimental study of a yielding support for roadways constructed in deep broken soft rock under high stress 被引量:7
7
作者 Lu Yinlong Wang Lianguo Zhang Bei 《Mining Science and Technology》 EI CAS 2011年第6期839-844,共6页
A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' w... A rationally designed support for deep roadways excavated in broken soft rock under high stress was investigated. The deformation and failure characteristics and the mechanism of ''yielding support'' was studied for anchor bolts and cables. The rail roadway of the 2-501 working face in the Liyazhuang Mine of the Huozhou coal area located in Shanxi province was used for field trials. The geological conditions used there were used during the design phase. The new ''highly resistant, yielding'' support system has a core of high strength, yielding bolts and anchor cables. The field tests show that this support system adapts well to the deformation and pressure in the deep broken soft rock. The support system effectively controls damage to the roadway and ensures the long term stability of the wall rock and safe production in the coal mine. This provides a remarkable economic and social benefit and has broad prospects for fur- ther application. 展开更多
关键词 High stress Broken soft rock roadways Yielding support Yielding anchor bolt
下载PDF
Mechanical mechanism and support design analysis on bolt-beam-net support in soft rock roadway in Qigou Coal Mine
8
作者 LI Tao SHAN Ren-liang +2 位作者 HAN Huan-shang YANG Wei-hong LIU Nian 《Journal of Coal Science & Engineering(China)》 2012年第3期247-253,共7页
The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments an... The deformation and failure mechanical mechanism in soft rock roadway is related to the stability of supported tunnels, which is important to coal mine production and construction. By physical mechanics experiments and X-ray diffraction (XRD) tests, the engineering mechanical properties of soft rock, as well as main mineral composition of the surrounding soft rock of Qigou Coal Mine, were obtained. Based on analysis results, a method using bolt-beam-net combination to support was put forward. Mechanical analysis of the support form was done by using the calculation software FLAC3D. Results show that clay minerals of this mine are kaolinite and illite mixed layer, of which the water absorption is relatively obvious and presented mudding characteristic after absorbing water, with the plasticity index of 0.35, with small expansibility, which is weakly consolidated colloid with strong connected force in unit cell. The rock blocks have the characteristics of moisture absorption softening, and the deformation mechanical mechanism of which is with the coexistence of molecular expansive mechanism, colloid expansive mechanism, and weak layer trend type. The calculation results show that the bolt-beam-net support structure makes the bolt, beam, and roof deform compatibly. The beams make the force in the bolt relatively homogeneous, which restricts the displacement of the tunnel roof as well. Finally, using in situ monitoring, the numerical results were verified. 展开更多
关键词 soft rock roadway mechanical mechanism combined supporting support design in situ monitoring
下载PDF
RESEARCH ON REPAIR SUPPORT FOR FLOOR HEAVE IN SOFT ROCK ROADWAY
9
作者 黄庆享 杨忠民 《Journal of Coal Science & Engineering(China)》 1997年第1期11-16,共6页
The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are d... The run-around of Xiagou subincline bottom is a soft rock roadway, its floor has heaved over 1 m. ln this paper, by electronic microscope scanning and X-ray diffraction analy-sis, the components of the soft rock are determined and the breaking mechanism of roadway is analyzed as well. Through finite element calculation and simulation model test, the reasonable repair support method is put forward. 展开更多
关键词 soft rock property breaking mechanism of roadway repair support
下载PDF
APPLICATION OF NEURAL NETWORK TO SUPPORT OF ROADWAY IN SOFT ROCK 被引量:1
10
作者 韩凤山 康立勋 《Journal of Coal Science & Engineering(China)》 2000年第1期37-39,共3页
It is well known that artificial neural network which has marvelous ability to gain knowledge has been widely used in various engineering field.In this paper, support of roadway in soft rock has been researched based ... It is well known that artificial neural network which has marvelous ability to gain knowledge has been widely used in various engineering field.In this paper, support of roadway in soft rock has been researched based on neural network. 展开更多
关键词 neural network support of roadway soft rock
全文增补中
Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control 被引量:20
11
作者 Chang Qingliang Zhou Huaqiang +1 位作者 Xie Zhihong Shen Shiping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期323-328,共6页
Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre... Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway. 展开更多
关键词 Hydraulic expansion bolt Anchoring force soft rock roadway Floor heave Shed support
下载PDF
Theory of SCSTKP in Soft Rock Roadway 被引量:4
12
作者 何满朝 徐能雄 +1 位作者 姚爱军 王俊臣 《International Journal of Mining Science and Technology》 2000年第2期2-6,共5页
The secondary coupling supporting technique on key parts (SCSTKP) is put forward. Based on the coupling state between supporting structure and surrounding rock of roadway, the key parts are divided into four types, an... The secondary coupling supporting technique on key parts (SCSTKP) is put forward. Based on the coupling state between supporting structure and surrounding rock of roadway, the key parts are divided into four types, and the characteristics of each type are described. The method to determine the optimum supporting time is also presented. 展开更多
关键词 soft rock roadway coupling design key parts coupling supporting
下载PDF
Study on Repairing Permanent Transportation Roadway in Deep Mining by Bolt-Shotcrete and Mesh Supporting 被引量:10
13
作者 宋宏伟 鹿守敏 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期167-171,共5页
The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production... The roadway support in many places of Jiulongkou Colliery, Fengfeng Mining Bureau, such as in the Permanent transportation roadway, was failed or locally caved, which seriously affected the colliery’s coal production performance and safety. Based on analysis of supporting objects for roadway repairing, this paper proposes the supporting parameters and condruction technics. The industrial ted of 70m long roadway repairing shows that the proposed parameters and technics of bolt shotcrete and mesh support for roadway repairing are reasouable, bring good technical and economic results for the colliery, and the repairing is successful. 展开更多
关键词 roadway repairing soft rock support bolt-shotcrete supportING broken rock zone
下载PDF
Control technology for floor heave of Jurassic soft rock in the Erdos Basin of China: A case study 被引量:6
14
作者 WEN Zhi-jie JING Suo-lin +1 位作者 MENG Fan-bao JIANG Yu-jing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期4051-4065,共15页
The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate a... The deformation of soft rock roadway caused by floor heave is a major challenge for coal mines in China western mining areas. To achieve security and stability of soft rock roadway, this work considered the headgate at panel 11505 of the Yushujing Coal Mine as background. First, based on the limit equilibrium method and slip line field theory,a model of floor heave was established, the mechanism of floor heave control was analyzed, and an optimized support method was proposed. Then, the displacement, stress and failure zones around the surrounding rock with the original and optimized support were studied by FLAC. Finally, the serviceability of the support method was verified by field application. The results showed that the main deformation form of soft rock roadway is floor heave, and 0.5 m is relatively reasonable thicknesses of the inverted arch. The extrusion failure zone and shear failure zone were mainly affected by tensile and shear failure, respectively. The modification of floor and the effective support are key points. The failure zone was consistent between numerical simulation and theoretical calculation. The maximum convergences of floor heave determined by numerical simulation and field measurement were 220 mm and 240 mm, respectively, which were reduced by 55% and 60% compared with the original support, and the convergence between sidewalls decreased considerably. The optimized support method controls the floor heave well. 展开更多
关键词 soft rock roadway floor heave mechanical model control mechanism optimized support
下载PDF
滇中芹河隧洞软岩破碎段围岩大变形与支护结构相互作用研究 被引量:2
15
作者 付敬 吴帆 +1 位作者 张雨霆 覃然 《长江科学院院报》 CSCD 北大核心 2024年第3期171-177,185,共8页
软岩大变形是滇中引水工程建设中较为突出的工程地质问题之一,以大楚段芹河隧洞4#支洞为研究对象开展软岩大变形特征及承载结构受力研究。4#支洞在施工过程中发生影响洞室稳定的问题,洞周围岩大变形不同程度侵限,导致钢拱架扭曲断裂、... 软岩大变形是滇中引水工程建设中较为突出的工程地质问题之一,以大楚段芹河隧洞4#支洞为研究对象开展软岩大变形特征及承载结构受力研究。4#支洞在施工过程中发生影响洞室稳定的问题,洞周围岩大变形不同程度侵限,导致钢拱架扭曲断裂、喷混凝土掉落现象时有发生。为了充分认识隧洞变形特征、破坏模式及成因机制,结合工程地质勘察、现场监控量测、数值反演及施工模拟分析等手段和方法对其进行综合研究。研究成果表明:破碎软岩洞段施工期围岩监测变形量大、变形速率较快,变形具有明显的时效性;围岩完整性差,洞周变形差异大;围岩以剪切破坏为主;围岩时效变形对支护结构受力影响大,部分承载结构受力超限,导致局部结构破坏。可见,针对破碎的软岩隧洞施工,需要采取超前注浆、减少减小施工扰动、及时跟进初期支护、尽快封闭成环,加强施工期围岩变形监测,选取合理的衬砌支护时机,实时指导和优化隧洞支护结构施工设计。 展开更多
关键词 破碎软岩 大变形 支护结构 蠕变 拱架断裂
下载PDF
软弱围岩掘锚一体化快速掘进关键技术与工程实践 被引量:4
16
作者 王虹 李发泉 张小峰 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第1期280-287,共8页
软弱围岩掘锚一体化快速掘进关键技术与装备是煤矿安全高效开采以及智能化建设的迫切需求。以具备膨胀性、节理化等软岩特征的煤矿回采巷道工程为背景,梳理了国内外掘锚一体机快速掘进技术发展现状,剖析了软弱围岩条件下掘锚一体机快速... 软弱围岩掘锚一体化快速掘进关键技术与装备是煤矿安全高效开采以及智能化建设的迫切需求。以具备膨胀性、节理化等软岩特征的煤矿回采巷道工程为背景,梳理了国内外掘锚一体机快速掘进技术发展现状,剖析了软弱围岩条件下掘锚一体机快速掘进面临3个方面的难题,包括全宽截割对围岩的扰动控制,软弱围岩及时高效永久支护,软弱围岩快速掘进煤帮临时支护。提出了软弱围岩掘锚一体化快速掘进的5项关键技术,包括:(1)低扰动截割技术。主要包括椭型全宽截割滚筒、截齿排布优化、截割动力学优化等。(2)减小空顶空帮距的及时支护技术。该技术是在掘锚一体化技术基础上,研制了集双圆柱导向、多连杆升降、支护油缸撑顶撑底、随动挡矸帘防护于一体的多钻机整体滑移平台,将掘锚一体机作业空顶距由2.5 m降至1 m,作业空帮距由3.5 m降至1 m。(3)软弱围岩多维度协同支护技术。综合考虑锚杆锚索支护参数间的时空协同效应和支护体与围岩的协同效应,掘进工作面采用低密度强力锚杆支护控制顶板,后部同步实施增强永久支护。(4)钻锚一体化技术。主要包括锚杆结构和力学特性、锚固剂材料及泵注技术等。(5)煤帮喷涂临时支护技术。主要包括快反应高延伸率喷涂材料、高比例精度喷涂泵送、不规则煤壁表面自适应轨迹控制、矿用防爆高精度机械臂、喷涂材料配套补给等。基于以上内容,研制了可控作业空顶距掘锚一体机,并进行了井下试验。试验表明,该装备有效缩短了作业空顶距和空帮距,实现了作业空顶距“可控”,适应于软弱围岩巷道快速掘进,掘进效率提高了1倍。 展开更多
关键词 软岩巷道 快速掘进 掘锚一体化 钻锚一体化 协同支护
下载PDF
极高地应力软岩隧道非对称变形机理及支护优化研究 被引量:2
17
作者 陈志敏 赵吉万 +3 位作者 龚军 陈宇飞 李增印 孙胜旗 《防灾减灾工程学报》 CSCD 北大核心 2024年第1期109-119,共11页
针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力... 针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力学特性室内试验研究及地应力实测情况,探究了非对称大变形形成机理并提出针对性的支护结果优化方案。结果表明:高地应力层状软岩隧道围岩不对称变形是在岩层倾角α、最大水平主应力与隧道轴线夹角β和岩层夹角γ、围岩岩性和地下水综合作用下的大变形,围岩不对称部位由以上几种因素共同决定;当主应力σ1与隧道轴线既不垂直也不平行时,会产生挤压性偏压构造水平地应力,使隧道横断面侧向受力不对称,发生偏压性非对称大变形;通过改变锚杆的布设方式、提高超前注浆小导管的长度和刚度、喷射临时封闭、在防水板与喷射砼间增加高密度橡塑海绵板缓冲层等措施,可以有效的减少变形量,防止围岩因开挖扰动而松动和坍塌。 展开更多
关键词 极高地应力 软岩隧道 非对称变形 支护优化
下载PDF
新景矿大断面岩巷综掘技术研究与应用 被引量:1
18
作者 邓鹏 《煤炭与化工》 CAS 2024年第4期10-13,共4页
为提高掘进速度,保证巷道稳定,在新景矿15号煤采区集中辅助运输巷开展了大断面岩巷综合机械化掘进技术的研究。在分析当前施工工艺以及支护中存在问题的基础上,提出了以EBZ320D掘进机和CMM2-25型锚杆钻机为主要设备的综合机械化岩巷掘... 为提高掘进速度,保证巷道稳定,在新景矿15号煤采区集中辅助运输巷开展了大断面岩巷综合机械化掘进技术的研究。在分析当前施工工艺以及支护中存在问题的基础上,提出了以EBZ320D掘进机和CMM2-25型锚杆钻机为主要设备的综合机械化岩巷掘进作业线。理论分析了锚杆索围岩强度强化理论,结合现场实际情况,设计了以不同长度锚索为主的支护方式。现场应用表明,应用新的综合机械化掘进技术后,巷道变形量小,掘进速度快,施工成本低,经济社会效益显著,应用效果良好。 展开更多
关键词 岩石巷道 大断面 巷道综掘 矿压观测
下载PDF
考虑湿度应力的深部软岩隧道大变形控制研究
19
作者 张建俊 王洋 +2 位作者 孙闯 裴文强 张馨 《地下空间与工程学报》 CSCD 北大核心 2024年第1期230-240,共11页
为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制... 为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制出3种围岩应力作用下围岩与初期支护特征曲线,分析断面变形过程中围岩与支护结构相互作用规律及3种应力占比演化规律。分别以混凝土与型钢钢架作为二衬支护结构对月直山隧道围岩稳定性进行计算分析,明确考虑湿度应力与松动压力条件下隧道二衬最优支护时机与支护参数,以支护结构安全系数FS评判出最优支护方案并对隧道软岩大变形进行治理。结果表明:当围岩径向位移达到550 mm时,仅考虑形变压力Pi时围岩对支护结构的压力P仅为0.813 MPa,考虑湿度应力Pw与松动压力Pa时P增大为1.372 MPa,湿度应力与松动应力总占比达40.7%,仅考虑形变压力而设计的支护结构不满足围岩稳定性要求;根据“卸压支护”理念,确定以“位移释放峰值upeak=0.325 m”与“间距d=0.7 m”作为增设第二层钢架的最佳支护时机与支护参数,现场二次钢架设置24天后使围岩变形收敛于50.8 mm,围岩大变形得到控制,研究成果可为今后相关隧道工程设计与施工提供参考。 展开更多
关键词 隧道工程 软岩大变形 湿度应力 收敛-约束法 支护优化
下载PDF
深部极松软围岩沿空巷道稳定性控制及应用
20
作者 袁安营 田鑫 +1 位作者 李唐 徐超凡 《煤炭工程》 北大核心 2024年第4期36-44,共9页
针对深部高应力作用下极松软围岩变形量大、破碎程度高、巷道难支护等问题,以丁集煤矿1232(3)沿空巷道为工程背景,采用数值模拟、现场监测和井下试验相结合的方法,对深部高应力极松软围岩沿空巷道破坏特征及阶段性控制原理和技术进行研... 针对深部高应力作用下极松软围岩变形量大、破碎程度高、巷道难支护等问题,以丁集煤矿1232(3)沿空巷道为工程背景,采用数值模拟、现场监测和井下试验相结合的方法,对深部高应力极松软围岩沿空巷道破坏特征及阶段性控制原理和技术进行研究。结果表明:随着距巷道迎头距离的不断增大,巷道两帮应力的不对称性逐渐增大,实体煤侧应力峰值为37.18 MPa大于煤柱侧35.21 MPa,1242(3)终采线50 m范围内存在应力集中,最大达33 MPa,巷道围岩塑性区发育程度为煤柱帮大于实体煤帮大于顶底板;从巷道掘进过程中所经历的复杂围岩变化过程,将全巷道划分为5种典型的围岩变化阶段来分析围岩变形破坏特征和破坏机理,揭示了在高应力作用下深部软岩沿空巷道围岩变形量大,在空间上呈现出明显的区域性和非对称性的特征;基于巷道初步设计方案和围岩变形破坏特征,及时有效的调整支护方案,对巷道进行分段式、非对称、区域化综合治理,形成深部软岩巷道围岩控制长效机制,为同类型深部软岩巷道地压治理提供了理论和技术支撑。 展开更多
关键词 深部高应力 极松软围岩 沿空巷道 围岩控制 阶段性支护
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部