期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical simulation on multiple pouring process for a 292 t steel ingot 被引量:5
1
作者 Tu Wutao Zhang Xiong +1 位作者 Shen Houfa Liu Baicheng 《China Foundry》 SCIE CAS 2014年第1期52-58,共7页
A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and th... A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and the mould for making a 292 t steel ingot. Firstly, the fluid flow as well as the heat and mass transfer of the molten steel in the tundish is simulated based on the multiphase transient turbulence model. Then, the carbon mixing in the mould is calculated by using the species concentration at the tundish outlet as the inlet condition during the teeming process. The results show a high concentration of carbon at the bottom and a low concentration of carbon at the top of the mould after a MP process with carbon content high in the first ladle and low in the last ladle. Such carbon concentration distribution would help reduce the negative segregation at the bottom and the positive segregation at the top of the solidified ingot. 展开更多
关键词 multiple pouring TRANSPORTATION numerical simulation large steel ingot
下载PDF
Melting and floating processes of inorganic materials in molten steel:Visualization physical simulation and mathematical modelling
2
作者 Jin-hu Lai Sheng Yu +4 位作者 Yang-jian Xu Dan-qing Jiang San-san Shuai Jiang Wang Zhong-ming Ren 《China Foundry》 SCIE CAS CSCD 2023年第2期89-98,共10页
It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opaci... It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opacity of the molten steel,the physical mechanism of the heat absorption method is not clear.In this work,a transparent hydraulic physical model with water and paraffin wax was built to simulate the melting and floating processes of inorganic materials in the molten steel.A mathematical simulation was also carried out to analyze the connection between the actual ingot and the physical model.Results show that it is feasible to simulate the molten steel and inorganic materials with water and paraffin wax.With the help of the physical model,the process of the melting of paraffin wax and its floating to the surface of water were clearly observed,during which the temperature of water at some characteristic positions in the mold was recorded.The visualization findings demonstrate that the melting and floating processes of paraffin wax can help to bring the heat from the center of the mold to the top surface more quickly,which reduces the superheat and significantly accelerates the cooling rate of water.The experimental results show that for the water with a certain superheat,the use of a larger mass of paraffin wax can accelerate the cooling of the water,but there is a risk of incomplete melting of the paraffin wax.A higher superheat of water will lead to a quicker melting rate for a given mass of paraffin wax,while a lower superheat leads to the incomplete melting of paraffin wax as well. 展开更多
关键词 water and paraffin wax heat absorption method physical simulation SUPERHEAT large steel ingot
下载PDF
A Numerical Study of the Effect of Multiple Pouring on Macrosegregation in a 438-Ton Steel Ingot 被引量:3
3
作者 Zhen-Hu Duan Hou-Fa Shen Bai-Cheng Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第9期1123-1133,共11页
In present paper, a ladle-tundish-mold CFD model and a macrosegregation model were utilized to investigate the effects of the multiple pouring (MP) process on the macrosegregation in a 438-ton steel ingot. Firstly, ... In present paper, a ladle-tundish-mold CFD model and a macrosegregation model were utilized to investigate the effects of the multiple pouring (MP) process on the macrosegregation in a 438-ton steel ingot. Firstly, the model was partially proved as compared to the measured carbon distributions along the transverse sections in the riser of ingot. Then, the comparison between the single pouring (SP) and MP process has been carried out to study their influences on the macrosegregation in ingot. Besides, the predicted macrosegregation results in MP process which introduced the improved riser fixed with an insulating sleeve were compared with that in traditional MP process. The traditional MP process leads to certain favorable initial carbon distribution in the mold, which has some favorable influence on suppressing the positive segregation in ingot. The holding time of the low carbon in the riser is the main factor to suppress the positive segregation in ingot. Improved insulating sleeve can prolong the holding time of the low carbon in the riser and release the positive segregation in the riser of ingot. Improvement of the insulating effect of the riser is an efficient method to control macrosegregation in large steel ingot. 展开更多
关键词 Multiple pouring process MACROSEGREGATION Numerical simulation large steel ingot
原文传递
Application of heat absorption method to reduce macrosegregation during solidification of bearing steel ingot 被引量:2
4
作者 Sheng Yu Long-qiang Zhu +6 位作者 Jin-hu Lai Ming-xu Pan Yue-yun Liu Wei-dong Xuan Jiang Wang Chuan-jun Li Zhong-ming Ren 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第12期1915-1926,共12页
The control of macrosegregation is still a difficult problem for the production of large steel ingots.In order to develop new techniques for producing low-macrosegregation and high-quality steel ingots,the effect of t... The control of macrosegregation is still a difficult problem for the production of large steel ingots.In order to develop new techniques for producing low-macrosegregation and high-quality steel ingots,the effect of the heat absorption method(HAM)used by the inorganic material rods to cool the liquid steel on the formation of macrosegregation during solidification of a 5-t GCr15SiMn bearing steel ingot was studied using experiment and mathematical simulation.The inorganic material was a mixture of CaF2 and CaO.The levels of macrosegregation in the longitudinal sections of two ingots with and without HAM were compared.Experimental results showed that the application of HAM reduced the positive segregation in the upper part of the ingot and the negative segregation in the lower part.The levels of carbon segregation along the longitudinal centerline and horizontal direction at different heights were all alleviated and the fluctuation of carbon segregation was significantly reduced.The simulation results confirmed that the melting and floating of the inorganic material could carry the sensible heat to the top of the liquid steel quickly.This leads to the acceleration of the cooling rate of the liquid steel,thereby alleviating the level of macrosegregation. 展开更多
关键词 large steel ingot MACROSEGREGATION Inorganic material Heat absorption method Mathematical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部