In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
Large steel space structures,when exposed to a harsh corrosive environment,are inevitably subjected to atmospheric corrosion and stress corrosion cracking.This paper proposes a framework for assessing the corrosion da...Large steel space structures,when exposed to a harsh corrosive environment,are inevitably subjected to atmospheric corrosion and stress corrosion cracking.This paper proposes a framework for assessing the corrosion damage of large steel space structures subjected to both stress corrosion cracking and atmospheric corrosion.The empirical model for estimating atmospheric corrosion based on measured information is briefly introduced.The proposed framework is applied to a real large steel space structure built in the southern coastal area in China to assess its corrosion damage and investigate the effects of atmospheric corrosion on stress corrosion cracking.Based on the results,the conceptual design of the corrosion monitoring system of large steel space structures is finally conducted as the first step for a real corrosion monitoring system.展开更多
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.
基金support from the Hong Kong Polytechnic University through its Niche Area Project in Performance-Based Structural Health Monitoring and the Fundamental Research Funds for the Central University of China(2010-II-019).
文摘Large steel space structures,when exposed to a harsh corrosive environment,are inevitably subjected to atmospheric corrosion and stress corrosion cracking.This paper proposes a framework for assessing the corrosion damage of large steel space structures subjected to both stress corrosion cracking and atmospheric corrosion.The empirical model for estimating atmospheric corrosion based on measured information is briefly introduced.The proposed framework is applied to a real large steel space structure built in the southern coastal area in China to assess its corrosion damage and investigate the effects of atmospheric corrosion on stress corrosion cracking.Based on the results,the conceptual design of the corrosion monitoring system of large steel space structures is finally conducted as the first step for a real corrosion monitoring system.