There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to...There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time.展开更多
In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was ...In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.展开更多
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa...ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.展开更多
With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and f...With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.展开更多
In order to study the mechanics behavior of a thin-walled box continuous girder with variable crosssections,using potential variation theories,considering the effect of shear lag of flange’s stress and the nonlinear ...In order to study the mechanics behavior of a thin-walled box continuous girder with variable crosssections,using potential variation theories,considering the effect of shear lag of flange’s stress and the nonlinear geometry of vertical displacement,and evolving five generalized displacements with the spline function,the large deflection problem of the thin-walled box continuous girder with variable cross-section was transformed to a nonlinear algebraic equation,which was solved using the Newton-Raphon iterative method.The results of the calculation show that different shear lag warp functions to the cantilever,top and bottom plate should be taken to analyze the mechanics behavior of the thin-walled box continuous girder reliably.The thin-walled box continuous girder with variable cross-sections has more reasonable stress state and is more adaptable for the longitudinal change of internal forces than that with equal crosssections.The effect of large deflection on the stress and displacement of the thin-walled box continuous girder with variable cross-sections depends on the values of the load.展开更多
A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreadi...A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreading to large-space building at dif- ferent air change rates (ACH). The result indicates that under the standard pre- scribed ACH, the effective air heights in the large spaces are respectively 6, 4 and 2 m in the case of cabin fires of 0.34, 0.67 and 1 MW. Numerical experiment has been conducted using self-developing two-zone model. The smoke control effi- ciency is compared by varying the large space’s air change rate in the case of cabin fires ranging from 0.25 to 4 MW. The calculation results show that the air change rates are respectively 3, 6, 10 and 10 ACH when the smoke layer is kept above 5 m, indicating that the centralized exhaust rates far exceed the standard prescribed value. To address this problem, a set of subsidiary distributed mechanical exhaust installing in the cabin with high fire loads is proposed. The simulation shows that both from the safety and economy point of view, the adoption of subsidiary dis- tributed cabin exhaust design may effectively reduce the demand of designed air change rate for large-space building.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Pujiang Program of China(Grant No.2020PJD071)+1 种基金Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)Fundamental Research Funds for the Central Universities of China.
文摘There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.
基金financial supports from the National Key Research and Development Program of China(2017YFA0403804)the National Natural Science Foundation of China(51425402,51671073)。
文摘ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.
基金supported by the National Natural Science Foundation of China (Grant Nos. 59975076, 50175092, 50905144)the National Science Found of China for Distinguished Young Scholars (Grant No. 50225518)
文摘With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.
文摘In order to study the mechanics behavior of a thin-walled box continuous girder with variable crosssections,using potential variation theories,considering the effect of shear lag of flange’s stress and the nonlinear geometry of vertical displacement,and evolving five generalized displacements with the spline function,the large deflection problem of the thin-walled box continuous girder with variable cross-section was transformed to a nonlinear algebraic equation,which was solved using the Newton-Raphon iterative method.The results of the calculation show that different shear lag warp functions to the cantilever,top and bottom plate should be taken to analyze the mechanics behavior of the thin-walled box continuous girder reliably.The thin-walled box continuous girder with variable cross-sections has more reasonable stress state and is more adaptable for the longitudinal change of internal forces than that with equal crosssections.The effect of large deflection on the stress and displacement of the thin-walled box continuous girder with variable cross-sections depends on the values of the load.
基金the National Natural Science Foundation of China (Grant Nos. 50674079 and 50579100)
文摘A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreading to large-space building at dif- ferent air change rates (ACH). The result indicates that under the standard pre- scribed ACH, the effective air heights in the large spaces are respectively 6, 4 and 2 m in the case of cabin fires of 0.34, 0.67 and 1 MW. Numerical experiment has been conducted using self-developing two-zone model. The smoke control effi- ciency is compared by varying the large space’s air change rate in the case of cabin fires ranging from 0.25 to 4 MW. The calculation results show that the air change rates are respectively 3, 6, 10 and 10 ACH when the smoke layer is kept above 5 m, indicating that the centralized exhaust rates far exceed the standard prescribed value. To address this problem, a set of subsidiary distributed mechanical exhaust installing in the cabin with high fire loads is proposed. The simulation shows that both from the safety and economy point of view, the adoption of subsidiary dis- tributed cabin exhaust design may effectively reduce the demand of designed air change rate for large-space building.