Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 ...Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 mm. And the effects of process parameters on tube wall thinning and cross section distortion were investigated. Meanwhile, acceptable bending of the 5052O aluminum tubes was accomplished based on the above experiments. The results show that the effects of process parameters on bending process for large diameter thin-walled aluminum alloy tubes are similar to those for small diameter thin-walled tubes, but the forming quality of the large diameter thin-walled aluminum alloy tubes is much more sensitive to the process parameters and thus it is more difficult to form.展开更多
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa...ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.展开更多
Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of...Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.展开更多
Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite d...Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.展开更多
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and f...With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.展开更多
The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finit...The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.展开更多
The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing(PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were s...The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing(PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were studied in the peripheral and axial directions. Results showed that values of energy absorption decreased with processing pass increasing and the values for the unprocessed, first and second passes were obtained to be 167, 161.4 and 160.7 J, respectively. The differences between the simulation results for the energy absorption values and their experimental values for the unprocessed, the first and the second PTCAP passes samples are about 5%, 10%, and 13%, respectively. The energy absorption capacity was related to the anisotropy coefficient and microstructure. The results demonstrated that grain refinement occurred and ultimate tensile strength(UTS) and microhardness after the first and second PTCAP passes were enhanced, while the increase rate in the first pass was much severer. Also, by applying PTCAP, the deformation modes were altered, such that the deformation mode of the annealed tube was quite symmetrical and circular while for the first and second passes there have been triple and double lobes diamond. The results of the numerical simulation for the deformation mode of the annealed and PTCAPed tubes were consistent with the experimental results. The deformation mode of tubes is dependent on their mechanical properties and variation of the mechanical properties during PTCAP process.展开更多
For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation proce...For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation process,the change process of residual stress within aluminum alloy pre-stretching plate is researched,and the distribution law of residual stress is indirectly obtained by delamination measurement methods,so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress,dynamic milling force and clamping force on machining distortion,a threedimensional dynamic finite element simulation model is established,and the whole cutting process is simulated from the blank material to finished product,a novel prediction method is proposed,which can availably predict the machining distortion accurately. The machining distortion state of the thin-walled part is achieved at different processing steps,the machining distortion of the thin-walled part is detected with three coordinate measuring machine tools,show that the simulation results are in good agreement with experimental data.展开更多
Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long s...Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.展开更多
7075 aluminum alloy thick plates were produced by three processing routines: commercial hot rolling followed by heat treatment of quenching and ageing (HR+QA), combination of large deformation processing of multi dire...7075 aluminum alloy thick plates were produced by three processing routines: commercial hot rolling followed by heat treatment of quenching and ageing (HR+QA), combination of large deformation processing of multi directional warm forging and subsequent warm rolling followed by heat treatment of quenching and ageing (LD+QA), and that followed by annealing at moderate temperature (LD+AN). Tensile strength, yield strength and elongation were measured by tension test, and the metallographic structures were examined by optical microscopy (OM) and transmission electron microscopy (TEM), also the fracture morphologies were observed by scanning electron microscopy (SEM). It is shown that higher tensile strength and yield strength are obtained from (LD+QA) processing in comparison with those from (HR+QA) and (LD+AN) processings. Tensile strength and yield strength obtained from (LD+QA) processing are 9.9% and 8.6% higher respectively than those from (HR+QA) processing, and 48.6% and 57.7% higher respectively than those from (LD+AN) processing; while the elongations of all the samples show no significant difference and keep 10%12%. Analyses of OM and TEM reveal that the mechanical behaviors are deeply associated with the formation of refined structures with fine grains and very fine precipitates, leading to fine grained hardening and excellent age hardening.展开更多
The quenching-spinning(Q-S)process,i.e.,shear spinning after blank quenching,has been increasingly utilized to form 2219 aluminum alloy complex thin-walled components.However,the changes in material property,shape and...The quenching-spinning(Q-S)process,i.e.,shear spinning after blank quenching,has been increasingly utilized to form 2219 aluminum alloy complex thin-walled components.However,the changes in material property,shape and stress of the blanks after quenching will affect the spin-ning forming precision.In this study,the rules and mechanisms of these effects are investigated based on a combined finite element(FE)model including blank quenching and component spinning process.The results indicate that the increase of material strength and the existence of distortion of the quenched blank lead to a notable increase in the non-uniformity of the circumferential compres-sive stress in the spinning area and the increase of the flange swing height during spinning.These changes result in an increase in the wall thickness and component-mandrel gap of the components.The quenching residual stress has little effect on wall thickness and roundness but can noticeably reduce the component-mandrel gap.This is because that the existence of quenching residual stress of the blank can lead to the decrease of the maximum circumferential compressive stress of the workpiece in spinning and an obvious drop in the maximum compressive stress after reaching the stress peak.Quenching distortion is the main factor affecting the roundness.Moreover,the opti-mized installation way of the blank for spinning is obtained.展开更多
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young ScholarsProject(59975076, 50175092) supported by the National Natural Science Foundation of ChinaProject(04H53057) supported by the Aviation Science Foundation of China
文摘Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 mm. And the effects of process parameters on tube wall thinning and cross section distortion were investigated. Meanwhile, acceptable bending of the 5052O aluminum tubes was accomplished based on the above experiments. The results show that the effects of process parameters on bending process for large diameter thin-walled aluminum alloy tubes are similar to those for small diameter thin-walled tubes, but the forming quality of the large diameter thin-walled aluminum alloy tubes is much more sensitive to the process parameters and thus it is more difficult to form.
基金financial supports from the National Key Research and Development Program of China(2017YFA0403804)the National Natural Science Foundation of China(51425402,51671073)。
文摘ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.
基金Projects (50905144, 50875216) supported by the National Natural Science Foundation of ChinaProject (09-10) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, ChinaProject (JC201028) supported by the Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.
文摘Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
基金supported by the National Natural Science Foundation of China (Grant Nos. 59975076, 50175092, 50905144)the National Science Found of China for Distinguished Young Scholars (Grant No. 50225518)
文摘With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.
基金Projects(50575184,50975235) supported by the National Natural Science Foundation of ChinaProject(YF07057) supported by Science and Technology Development Program of Xi'an City,Shaanxi Province,China+1 种基金Project(NPU-FFR-200809) supported by Foundation for Fundamental Research of Northwestern Polytechnical University,ChinaProject(08-3) supported by State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,China
文摘The cross-sectional distortion usually appears during rotary-draw bending process of thin-walled rectangular tube with small bending radius.To study the cross-sectional distortion of the tube,a three-dimensional finite-element model of the process was developed based on ABAQUS/Explicit code and its reliability was validated by experiment.Then,the cross-sectional distortion behaviors of the tube were investigated.The results show that a zone of larger circumferential stress appears on the tube when bending angle reaches 30°.And in the larger circumferential stress zone,the sagging phenomenon is produced obviously.The maximum cross-sectional distortion is located in the larger circumferential stress zone and the angle between the plane of maximum cross-sectional distortion and the bending reference plane is about 50°.The position of the maximum cross-sectional distortion keeps almost unchanged with the variation of the clearances between dies and tube.
文摘The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing(PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were studied in the peripheral and axial directions. Results showed that values of energy absorption decreased with processing pass increasing and the values for the unprocessed, first and second passes were obtained to be 167, 161.4 and 160.7 J, respectively. The differences between the simulation results for the energy absorption values and their experimental values for the unprocessed, the first and the second PTCAP passes samples are about 5%, 10%, and 13%, respectively. The energy absorption capacity was related to the anisotropy coefficient and microstructure. The results demonstrated that grain refinement occurred and ultimate tensile strength(UTS) and microhardness after the first and second PTCAP passes were enhanced, while the increase rate in the first pass was much severer. Also, by applying PTCAP, the deformation modes were altered, such that the deformation mode of the annealed tube was quite symmetrical and circular while for the first and second passes there have been triple and double lobes diamond. The results of the numerical simulation for the deformation mode of the annealed and PTCAPed tubes were consistent with the experimental results. The deformation mode of tubes is dependent on their mechanical properties and variation of the mechanical properties during PTCAP process.
基金Sponsored by the National Natural Science Foundation of China(Grant No.,51475106)NSAF(Grant No.U1230110)
文摘For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation process,the change process of residual stress within aluminum alloy pre-stretching plate is researched,and the distribution law of residual stress is indirectly obtained by delamination measurement methods,so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress,dynamic milling force and clamping force on machining distortion,a threedimensional dynamic finite element simulation model is established,and the whole cutting process is simulated from the blank material to finished product,a novel prediction method is proposed,which can availably predict the machining distortion accurately. The machining distortion state of the thin-walled part is achieved at different processing steps,the machining distortion of the thin-walled part is detected with three coordinate measuring machine tools,show that the simulation results are in good agreement with experimental data.
基金Supported by National Natural Science Foundation of China(Grant No.51405226).
文摘Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation,so a research of residual stress relaxation was launched in this paper.The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration.The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out.According to the amount of residual stress relaxation in the experiment,an analytical model was established with the equivalent stress level coefficient.The deflection range of long stringer was evaluated under different damping ratios.The results show that when the equivalent stress exceeds 0.8σ0.2,the residual stress relaxation of the thin-walled samples occurs.The residual stress relaxation increases linearly with the equivalent stress,which is logarithmically related to the loading cycle.The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance,and inversely proportional to the moment of inertia of the structure.As the damping ratio decreases from 0.03 to 0.01,the total deflection of the long stringer increases from 0 to above 1.55 mm.
文摘7075 aluminum alloy thick plates were produced by three processing routines: commercial hot rolling followed by heat treatment of quenching and ageing (HR+QA), combination of large deformation processing of multi directional warm forging and subsequent warm rolling followed by heat treatment of quenching and ageing (LD+QA), and that followed by annealing at moderate temperature (LD+AN). Tensile strength, yield strength and elongation were measured by tension test, and the metallographic structures were examined by optical microscopy (OM) and transmission electron microscopy (TEM), also the fracture morphologies were observed by scanning electron microscopy (SEM). It is shown that higher tensile strength and yield strength are obtained from (LD+QA) processing in comparison with those from (HR+QA) and (LD+AN) processings. Tensile strength and yield strength obtained from (LD+QA) processing are 9.9% and 8.6% higher respectively than those from (HR+QA) processing, and 48.6% and 57.7% higher respectively than those from (LD+AN) processing; while the elongations of all the samples show no significant difference and keep 10%12%. Analyses of OM and TEM reveal that the mechanical behaviors are deeply associated with the formation of refined structures with fine grains and very fine precipitates, leading to fine grained hardening and excellent age hardening.
基金co-supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.52105417)the Foundation of Civil Aviation Flight University of China(Nos.J2022-067,ZJ2022-003 and JG2022-27)the National Science Fund for Excellent Young Scholars of China(No.52122509).
文摘The quenching-spinning(Q-S)process,i.e.,shear spinning after blank quenching,has been increasingly utilized to form 2219 aluminum alloy complex thin-walled components.However,the changes in material property,shape and stress of the blanks after quenching will affect the spin-ning forming precision.In this study,the rules and mechanisms of these effects are investigated based on a combined finite element(FE)model including blank quenching and component spinning process.The results indicate that the increase of material strength and the existence of distortion of the quenched blank lead to a notable increase in the non-uniformity of the circumferential compres-sive stress in the spinning area and the increase of the flange swing height during spinning.These changes result in an increase in the wall thickness and component-mandrel gap of the components.The quenching residual stress has little effect on wall thickness and roundness but can noticeably reduce the component-mandrel gap.This is because that the existence of quenching residual stress of the blank can lead to the decrease of the maximum circumferential compressive stress of the workpiece in spinning and an obvious drop in the maximum compressive stress after reaching the stress peak.Quenching distortion is the main factor affecting the roundness.Moreover,the opti-mized installation way of the blank for spinning is obtained.