期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Very Large Scale Wind Turbine
1
作者 Ernst Kussul Tetyana Baydyk 《Journal of Energy and Power Engineering》 2021年第4期128-134,共7页
A very large scale wind turbine can be made as a circular large scale stator frame;the frame,which can reach some kilometers in diameter and some hundred meters in height,contains many circular sail trains.The stator ... A very large scale wind turbine can be made as a circular large scale stator frame;the frame,which can reach some kilometers in diameter and some hundred meters in height,contains many circular sail trains.The stator frame can be made using a light-weight tubular design.Wind can almost freely blow through this frame.Train rails are fixed at the outer surface of the frame as horizontal rings.The distance between the rails of one ring can be made to be several meters.As a result,the number of the rings can be ten or more.Each rail ring supports one sail train that is moved with wind power around the frame.The energy of this movement is transformed to electric power and is transmitted to the base of the frame.This design can be realized in a very large scale,which is difficult to achieve using a traditional three-blade turbine. 展开更多
关键词 Very large scale wind turbine sail train vertical axis wind turbine.
下载PDF
A CFD/CSD model for aeroelastic calculations of large-scale wind turbines 被引量:11
2
作者 GUO TongQing LU ZhiLiang +2 位作者 TANG Di WANG TongGuang DONG Lu 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期205-211,共7页
In this paper,a CFD/CSD model coupling N-S equations and structural equations of motion in the time domain is described for aeroelastic analysis of large wind turbines.The structural modes of blades are analyzed with ... In this paper,a CFD/CSD model coupling N-S equations and structural equations of motion in the time domain is described for aeroelastic analysis of large wind turbines.The structural modes of blades are analyzed with one-dimensional beam models.By combining point matched sliding grid for wind turbine rotation and deforming grid for structural vibrations,a hybrid dynamic grid strategy is designed for the multi-block structured grid system of a wind turbine.The dual time-stepping approach and finite volume scheme are applied to the three-dimensional unsteady preconditioned N-S equations,and DES approach is employed to simulate the unsteady massively separated flows.A modal approach is adopted to calculate the structural response,and a predictor-corrector scheme is used to solve the structural equations of motion.CFD and CSD solvers are tightly coupled via successive iterations within each physical time step.As a result,a time-domain CFD/CSD model for aeroelastic analysis of a large wind turbine is achieved.The presented method is applied to the NH1500 large wind turbine under the rated condition,and the calculated aeroelastic characteristics agree well with those of the prescribed vortex wake method. 展开更多
关键词 large wind turbine aeroelastics time-domain method multi-block grid N-S equations structural equations of motion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部