The Early Jurassic volcanic sequence of the Central Atlantic Magmatic Province(CAMP)of Morocco is classically subdivided into four stratigraphic units:the Lower,Middle,Upper and Recurrent Formations separated
An investigation of large-eddy simulation(LES) for turbulent channel flow with buoyancy effects was performed by solving the resolved incompressible Navier-Stokes equations under the Boussinesq approximation. The Smag...An investigation of large-eddy simulation(LES) for turbulent channel flow with buoyancy effects was performed by solving the resolved incompressible Navier-Stokes equations under the Boussinesq approximation. The Smagorinsky eddy-viscosity model and Yoshizawa eddy-viscosity model were used to describe the unresolved subgrid scale (SGS) fluctuations respectively After some numerical testing, the latter was further simplified so that if can be used in the dynamic model closure. A LES code was developed for parallel computations by using the parallel technique, and aas run on the Dawn-1000 parallel computer. To demonstrate the viability and accuracy of the code, our results are compared with and found in good agreement with available LES results.展开更多
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c...An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.展开更多
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a seco...Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors.展开更多
The governing equations for large eddy simulation (LES) are obtained by filtering the Navier-Stokes (N-S) equations with standard (non-Favre filtering) spatial filter function. The filtered scale stress due to t...The governing equations for large eddy simulation (LES) are obtained by filtering the Navier-Stokes (N-S) equations with standard (non-Favre filtering) spatial filter function. The filtered scale stress due to the standard filtering is then reconstructed by using the Taylor series expansion. The loss of information due to truncating the expansion up to the first derivative term is modeled by a dynamic nonlinear model (DNM), which is free from any empirical constant and wall damping function. The DNM avoids the singularity of the model and shows good local stability. Unlike the conventional dynamic Smagorinsky model (DSM), the DNM does not require the plane averaging and reduces the computational cost. The turbulent flow over a double ellipsoid for Reynolds number of 4.25 × 10^6 and Mach number of 8.02 is simulated numerically to validate the proposed approach. The results are compared with experiment data, as well as the data of Reynolds averaged numerical simulation (RANS).展开更多
Large-scale incinerators are applied widely as a result of the heavy burden of municipal solid waste(MSW) generated, while strong opposition is arising from the public living nearby. A large-scale working incinerati...Large-scale incinerators are applied widely as a result of the heavy burden of municipal solid waste(MSW) generated, while strong opposition is arising from the public living nearby. A large-scale working incineration plant of 1500 ton/day was chosen for evaluation using life cycle assessment. It was found that the corresponding human toxicity impacts via soil(HTs), human toxicity impacts via water(HTw) and human toxicity impacts via air(HTa)categories are 0.213, 2.171, and 0.012 personal equivalents(PE), and global warming(GW100)and nutrient enrichment(NE) impacts are 0.002 and 0.001 PE per ton of waste burned for this plant. Heavy metals in flue gas, such as Hg and Pb, are the two dominant contributors to the toxicity impact categories, and energy recovery could reduce the GW100 and NE greatly. The corresponding HTs, HTw and HTa decrease to 0.087, 0.911 and 0.008 PE, and GW100 turns into savings of- 0.007 PE due to the increase of the heating value from 3935 to5811 k J/kg, if a trommel screener of 40 mm mesh size is used to pre-separate MSW. MSW sorting and the reduction of water content by physical pressure might be two promising pre-treatment methods to improve the combustion performance, and the application of stricter standards for leachate discharge and the flue gas purification process are two critical factors for improvement of the environmental profile identified in this work.展开更多
Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process o...Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process of LSGP are limited. To identify the atmospheric Hg emission points and understand Hg emission characteristics of LSGP, Hg flows in two gold smelters were studied. Overall atmospheric Hg emissions accounted for 10%–17% of total Hg outputs and the Hg emission factors for all processes were 7.6–9.6 kg/ton. There were three dominant atmospheric Hg emission points in the studied gold smelters, including the exhaust gas of the roasting process, exhaust gas from the environmental fog collection stack and exhaust gas from the converter of the refining process. Atmospheric Hg emissions from the roasting process only accounted for 16%–29% of total emissions and the rest were emitted from the refining process. The overall Hg speciation profile(gaseous elemental Hg/gaseous oxidized Hg/particulate-bound Hg) for LSGP was 34.1/57.1/8.8. The dominant Hg output byproducts included waste acid, sulfuric acid and cyanide leaching residue. Total Hg outputs from these three byproducts were 80% in smelter A and 84% in smelter B. Our study indicated that previous atmospheric Hg emissions from large-scale gold production might have been overestimated.Hg emission control in LSGP is not especially urgent in China compared to other significant emission sources(e.g., cement plants). Instead, LSGP is a potential Hg release source due to the high Hg output proportions to acid and sludge.展开更多
A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000(based on the relative wall speed and half the channel height h) with different streamwise and spanwise ...A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000(based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow(SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes.展开更多
We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-visco...We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
The increasing penetration of wind power brings great uncertainties into power systems,which poses challenges to system planning and operation.This paper proposes a novel probabilistic load flow(PLF)method based on cl...The increasing penetration of wind power brings great uncertainties into power systems,which poses challenges to system planning and operation.This paper proposes a novel probabilistic load flow(PLF)method based on clustering technique to handle large fluctuations from large-scale wind power integration.The traditional cumulant method(CM)for PLF is based on the linearization of load flow equations around the operation point,therefore resulting in significant errors when input random variables have large fluctuations.In the proposed method,the samples of wind power and loads are first generated by the inverse Nataf transformation and then clustered using an improved K-means algorithm to obtain input variable samples with small variances in each cluster.With such pre-processing,the cumulant method can be applied within each cluster to calculate cumulants of output random variables with improved accuracy.The results obtained in each cluster are combined according to the law of total probability to calculate the final cumulants of output random variables for the whole samples.The proposed method is validated on modified IEEE 9-bus and 118-bus test achieve a better performance with the consideration of both traditional CM,2 m+1 point estimate method(PEM),Monte Carlo simulation(MCS)and Latin hypercube sampling(LHS)based MCS,the proposed method can achieve a better performance with the consideration of bothcomputational efficiency and accuracy.展开更多
Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flame...Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.展开更多
A new dynamic subgrid-scale (SGS) model, which is proved to satisfy the principle of asymptotic material frame indifference (AMFI) for rotating turbulence, is proposed based on physical and mathematical analysis. Comp...A new dynamic subgrid-scale (SGS) model, which is proved to satisfy the principle of asymptotic material frame indifference (AMFI) for rotating turbulence, is proposed based on physical and mathematical analysis. Comparison with direct numerical simulation (DNS) results verifies that the new SGS model is effective for large eddy simulation (LES) on rotating turbulent flow. The SGS model is then applied to the LES of the spanwise rotating turbulent channel flow to investigate the rotation effect on turbulence characteristics, budget terms in the transport equations of resolved Reynolds stresses, and flow structures near the wall regions of the rotating channel.展开更多
Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's tur...Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.展开更多
The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be ...The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application.展开更多
In this work,the drag-reducing mechanism of high-Reynoldsnumber turbulent channel flow with surfactant additives is investigated by using large eddy simulation(LES)method.An N-parallel finitely extensible nonlinear el...In this work,the drag-reducing mechanism of high-Reynoldsnumber turbulent channel flow with surfactant additives is investigated by using large eddy simulation(LES)method.An N-parallel finitely extensible nonlinear elastic model with Peterlin’s approximation(FENE-P)is used to describe the rheological behaviors of non-Newtonian fluid with surfactant.To close the filtered LES equations,a hybrid subgrid scale(SGS)model coupling the spatial filter and temporal filter is applied to compute the subgrid stress and other subfilter terms.The finite difference method and projection algorithm are adopted to solve the LES governing equations.To validate the correctness of our LES method and in-house code,the particle image velocimetry(PIV)experiment is carried out and representative measured results are compared with LES results in detail.Then the flow characteristics and drag-reducing mechanism of turbulent channel flow with surfactant are investigated from the perspective of drag reduction rate,mean velocity,fluctuation of deformation rate,shear stress,transport and dissipation of turbulent kinetic energy,and turbulent coherent structures.This research can shed a light on the application of turbulent drag reduction technique in district heating,petroleum transport,etc.展开更多
The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integ...The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integration time is larger than 100 model years are performed in order to investigate variations of large-scale flow patterns arising from both external interannual thermal forcing and internal dynamical processes.In certain parametric range,when the fre- quency of the forcing term with interannual period equals to the frequency which is created by the internal dynamical processes alone,the amplitude of interannual variations of flow patterns increases obviously,and the period becomes double.In other parametric range,the amplitude of interannual variations of flow patterns shows abrupt changes and other nonlinear behavior,along with gradual changes of interannual forcing parameters.展开更多
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-sc...In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.展开更多
文摘The Early Jurassic volcanic sequence of the Central Atlantic Magmatic Province(CAMP)of Morocco is classically subdivided into four stratigraphic units:the Lower,Middle,Upper and Recurrent Formations separated
基金The project supported by the National Natural Science Foundation of Chinaby the Youngster Funding of Academia Sinica
文摘An investigation of large-eddy simulation(LES) for turbulent channel flow with buoyancy effects was performed by solving the resolved incompressible Navier-Stokes equations under the Boussinesq approximation. The Smagorinsky eddy-viscosity model and Yoshizawa eddy-viscosity model were used to describe the unresolved subgrid scale (SGS) fluctuations respectively After some numerical testing, the latter was further simplified so that if can be used in the dynamic model closure. A LES code was developed for parallel computations by using the parallel technique, and aas run on the Dawn-1000 parallel computer. To demonstrate the viability and accuracy of the code, our results are compared with and found in good agreement with available LES results.
基金the National Natural Science Foundation of China(50779069 and 90510007)the Start-up Scientific Research Foundation of China Agricultural University(2006021)the Beijing Natural Science Foundation(3071002).
文摘An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
基金The project supported by the National Science Fund for Distinguished Scholars (10125210)the Special Funds for Major State Basic Research Project (G1999032801)the National Natural Science Foundation of China (19772062)
文摘Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors.
文摘The governing equations for large eddy simulation (LES) are obtained by filtering the Navier-Stokes (N-S) equations with standard (non-Favre filtering) spatial filter function. The filtered scale stress due to the standard filtering is then reconstructed by using the Taylor series expansion. The loss of information due to truncating the expansion up to the first derivative term is modeled by a dynamic nonlinear model (DNM), which is free from any empirical constant and wall damping function. The DNM avoids the singularity of the model and shows good local stability. Unlike the conventional dynamic Smagorinsky model (DSM), the DNM does not require the plane averaging and reduces the computational cost. The turbulent flow over a double ellipsoid for Reynolds number of 4.25 × 10^6 and Mach number of 8.02 is simulated numerically to validate the proposed approach. The results are compared with experiment data, as well as the data of Reynolds averaged numerical simulation (RANS).
基金supported by the National Natural Science Foundation of China (Nos. 41173108, 51278350)the Alexander von Humboldt Foundation (2010), Shanghai Rising-Star Program (14QA1402400)+1 种基金Key project of Science and Technology Commission of Shanghai Municipality (No. 13DZ0511600)National Key Technology R&D Program (No. 2014BAL02B03-4)
文摘Large-scale incinerators are applied widely as a result of the heavy burden of municipal solid waste(MSW) generated, while strong opposition is arising from the public living nearby. A large-scale working incineration plant of 1500 ton/day was chosen for evaluation using life cycle assessment. It was found that the corresponding human toxicity impacts via soil(HTs), human toxicity impacts via water(HTw) and human toxicity impacts via air(HTa)categories are 0.213, 2.171, and 0.012 personal equivalents(PE), and global warming(GW100)and nutrient enrichment(NE) impacts are 0.002 and 0.001 PE per ton of waste burned for this plant. Heavy metals in flue gas, such as Hg and Pb, are the two dominant contributors to the toxicity impact categories, and energy recovery could reduce the GW100 and NE greatly. The corresponding HTs, HTw and HTa decrease to 0.087, 0.911 and 0.008 PE, and GW100 turns into savings of- 0.007 PE due to the increase of the heating value from 3935 to5811 k J/kg, if a trommel screener of 40 mm mesh size is used to pre-separate MSW. MSW sorting and the reduction of water content by physical pressure might be two promising pre-treatment methods to improve the combustion performance, and the application of stricter standards for leachate discharge and the flue gas purification process are two critical factors for improvement of the environmental profile identified in this work.
基金supported by the National basic Research Program (973) of China (No.2013CB430001)the National Natural Science Foundation of China (No.21077065)the China Postdoctoral Science Foundation (2016T90103,2016M601053)
文摘Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process of LSGP are limited. To identify the atmospheric Hg emission points and understand Hg emission characteristics of LSGP, Hg flows in two gold smelters were studied. Overall atmospheric Hg emissions accounted for 10%–17% of total Hg outputs and the Hg emission factors for all processes were 7.6–9.6 kg/ton. There were three dominant atmospheric Hg emission points in the studied gold smelters, including the exhaust gas of the roasting process, exhaust gas from the environmental fog collection stack and exhaust gas from the converter of the refining process. Atmospheric Hg emissions from the roasting process only accounted for 16%–29% of total emissions and the rest were emitted from the refining process. The overall Hg speciation profile(gaseous elemental Hg/gaseous oxidized Hg/particulate-bound Hg) for LSGP was 34.1/57.1/8.8. The dominant Hg output byproducts included waste acid, sulfuric acid and cyanide leaching residue. Total Hg outputs from these three byproducts were 80% in smelter A and 84% in smelter B. Our study indicated that previous atmospheric Hg emissions from large-scale gold production might have been overestimated.Hg emission control in LSGP is not especially urgent in China compared to other significant emission sources(e.g., cement plants). Instead, LSGP is a potential Hg release source due to the high Hg output proportions to acid and sludge.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11221061,11272013,and 11302006)
文摘A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000(based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow(SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes.
基金supported by the National Basic Research Program of China (973 Program) (2007CB814800)the National Natural Science Foundation of China (10325211 and 10628206)
文摘We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金supported by the National Key Research and Development Program of China(No.2017YFB0903400).
文摘The increasing penetration of wind power brings great uncertainties into power systems,which poses challenges to system planning and operation.This paper proposes a novel probabilistic load flow(PLF)method based on clustering technique to handle large fluctuations from large-scale wind power integration.The traditional cumulant method(CM)for PLF is based on the linearization of load flow equations around the operation point,therefore resulting in significant errors when input random variables have large fluctuations.In the proposed method,the samples of wind power and loads are first generated by the inverse Nataf transformation and then clustered using an improved K-means algorithm to obtain input variable samples with small variances in each cluster.With such pre-processing,the cumulant method can be applied within each cluster to calculate cumulants of output random variables with improved accuracy.The results obtained in each cluster are combined according to the law of total probability to calculate the final cumulants of output random variables for the whole samples.The proposed method is validated on modified IEEE 9-bus and 118-bus test achieve a better performance with the consideration of both traditional CM,2 m+1 point estimate method(PEM),Monte Carlo simulation(MCS)and Latin hypercube sampling(LHS)based MCS,the proposed method can achieve a better performance with the consideration of bothcomputational efficiency and accuracy.
基金supported by the National Natural Science Foundation of China(Nos.91441202 and 51476087)
文摘Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.
基金supported by the National Natural Science Foundation of China(Grant Nos.10302028 and 10125210)the China NKBRSF Project(Grant No.2001CB409600)the Hundred Talents Programme of the Chinese Academy of Sciences,and Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20020358013).
文摘A new dynamic subgrid-scale (SGS) model, which is proved to satisfy the principle of asymptotic material frame indifference (AMFI) for rotating turbulence, is proposed based on physical and mathematical analysis. Comparison with direct numerical simulation (DNS) results verifies that the new SGS model is effective for large eddy simulation (LES) on rotating turbulent flow. The SGS model is then applied to the LES of the spanwise rotating turbulent channel flow to investigate the rotation effect on turbulence characteristics, budget terms in the transport equations of resolved Reynolds stresses, and flow structures near the wall regions of the rotating channel.
基金The project supported by the Youngster Funding of Academia Sinica and by the National Natural Science Foundation of China
文摘Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.
基金This paper was supported bythe Foundationforthe Author of National Excellent Doctoral Dissertation of P.R.China(Grant No.200428) the National Natural Science Foundation of China (Grant Nos .10272072 and 50424913) +1 种基金theShanghai Natural Science Foundation (Grant No.05ZR14048) the Shanghai Leading Academic Discipline Pro-ject (Grant No. Y0103)
文摘The interaction between waves, currents and bottoms in estuarine and coastal regions is ubiquitious, in particular the dynamic mechanism of waves on large-scale slowly varying currents. The wave action concept may be extended and applicated to the study of the mechanism. Considering the effects of moving bottoms and starting from the Navier-Stokes equation of motion of a vinous fluid including the Coriolis force, a generalized mean-flow medel theory for the nearshore region, that is, a set of mean-flow equations and their generalized wave action equation involving the three new kinds of actions termed respectively as the current wave action, the bottom wave action and the dissipative wave action which can be applied to arbitrary depth over moving bottoms and ambient currents with a typical vertical structure, is developed by vertical integration and time-averaglng over a wave peried, thus extending the classical concept, wave action, from the ideal averaged flow conservative system to the real averaged flow dissipative dynamical system, and having a large range of application.
基金This research was supported by the Beijing Natural Science Foundation(3204038)the National Natural Science Foundation of China(51904031,51936001)the Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017023).
文摘In this work,the drag-reducing mechanism of high-Reynoldsnumber turbulent channel flow with surfactant additives is investigated by using large eddy simulation(LES)method.An N-parallel finitely extensible nonlinear elastic model with Peterlin’s approximation(FENE-P)is used to describe the rheological behaviors of non-Newtonian fluid with surfactant.To close the filtered LES equations,a hybrid subgrid scale(SGS)model coupling the spatial filter and temporal filter is applied to compute the subgrid stress and other subfilter terms.The finite difference method and projection algorithm are adopted to solve the LES governing equations.To validate the correctness of our LES method and in-house code,the particle image velocimetry(PIV)experiment is carried out and representative measured results are compared with LES results in detail.Then the flow characteristics and drag-reducing mechanism of turbulent channel flow with surfactant are investigated from the perspective of drag reduction rate,mean velocity,fluctuation of deformation rate,shear stress,transport and dissipation of turbulent kinetic energy,and turbulent coherent structures.This research can shed a light on the application of turbulent drag reduction technique in district heating,petroleum transport,etc.
基金This work was supported by the National Natural Science Foundation of China
文摘The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integration time is larger than 100 model years are performed in order to investigate variations of large-scale flow patterns arising from both external interannual thermal forcing and internal dynamical processes.In certain parametric range,when the fre- quency of the forcing term with interannual period equals to the frequency which is created by the internal dynamical processes alone,the amplitude of interannual variations of flow patterns increases obviously,and the period becomes double.In other parametric range,the amplitude of interannual variations of flow patterns shows abrupt changes and other nonlinear behavior,along with gradual changes of interannual forcing parameters.
基金This work was supported by the National Science Fund for Distinguished Scholars (No.10125210)the National Natural Science Foundation of China (Grant No.19889210)+1 种基金 the China NKBRSF Project (No. 2001CB409600) the Hundred Talents Programme of the Chi
文摘In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.