A numerical model is developed for dynamic analysis of large-cylinder breakwaters embedded in soft soil. In the model, the large cylinder is taken as a rigid body divided into elements and the soft soil is replaced by...A numerical model is developed for dynamic analysis of large-cylinder breakwaters embedded in soft soil. In the model, the large cylinder is taken as a rigid body divided into elements and the soft soil is replaced by discrete 3D nonlinear spring-dashpot systems. The numerical model is used to simulate the dynamic response of a large-cylinder breakwater to breaking wave excitation. The effects of the dynamic stress-strain relationship models of the soil, the radius and embedded depth of the cylinder, the nonlinear behaviors of the soil, and the limit strength condition of the soil on the dynamic responses of the large-cylinder structure are investigated with an example given. It is indicated that the above-mentioned factors have significant effects on the dynamic responses of an embedded large cylinder breakwater under breaking wave excitation.展开更多
文摘A numerical model is developed for dynamic analysis of large-cylinder breakwaters embedded in soft soil. In the model, the large cylinder is taken as a rigid body divided into elements and the soft soil is replaced by discrete 3D nonlinear spring-dashpot systems. The numerical model is used to simulate the dynamic response of a large-cylinder breakwater to breaking wave excitation. The effects of the dynamic stress-strain relationship models of the soil, the radius and embedded depth of the cylinder, the nonlinear behaviors of the soil, and the limit strength condition of the soil on the dynamic responses of the large-cylinder structure are investigated with an example given. It is indicated that the above-mentioned factors have significant effects on the dynamic responses of an embedded large cylinder breakwater under breaking wave excitation.