Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was de...Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same.展开更多
This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of bot...This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.展开更多
With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has establishe...With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects, and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data.展开更多
The mechanical properties of the steel pipe rolled with continuously casting round billet after determining the chemical composition in steel were studied.The results show that the total reduction ratio should be high...The mechanical properties of the steel pipe rolled with continuously casting round billet after determining the chemical composition in steel were studied.The results show that the total reduction ratio should be higher than 5.2 when the line pipes of grade B,grade 20 and other general seamless pipe were rolled with continuously casting round billet.And the total reduction ratio should be higher than 10.2 and the grain size should be controlled more than grade 7 for casing of oil countryside tubular goods(OCTG).展开更多
无缝钢管为海底油气输送管道的一种常用类型,其在制造过程中可能出现各种质量问题。本文针对某钢厂生产的φ168.3 mm×14.3 mm X65QO海底无缝钢管出现热处理后屈服强度偏低的问题,从化学成分、生产设备、工艺参数等方面进行了调查分...无缝钢管为海底油气输送管道的一种常用类型,其在制造过程中可能出现各种质量问题。本文针对某钢厂生产的φ168.3 mm×14.3 mm X65QO海底无缝钢管出现热处理后屈服强度偏低的问题,从化学成分、生产设备、工艺参数等方面进行了调查分析,最终通过多次试验提出了“加大外淋水流量和提高淬火温度”的解决方案,从而保证了钢管的质量和管线的本质安全,为后续类似问题的解决提供了参考。展开更多
基金Project(U1134207)supported by the National Natural Science and High Speed Railway Jointed Foundation of ChinaProject(B13024)supported by the "111" Program of China+1 种基金Project(BK2012811)supported by the Nature Science Foundation of Jiangsu Province,ChinaProject(NCET-12-0843)supported by the Fund for New Century Excellent Talents in Universities,China
文摘Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same.
基金supported by the Joint High Speed Railway Key Program of National Natural Science Foundation of China (Grant No.U1134207)the National Natural Science Foundation of China (Grant No.51378177)+1 种基金the Program for Excellent University Talents in New Century (Grant No.NCET-12-0843)the Fundamental Research Fund for the Central Universities (Grant No.106112014CDJZR200007)
文摘This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.
文摘With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects, and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data.
文摘The mechanical properties of the steel pipe rolled with continuously casting round billet after determining the chemical composition in steel were studied.The results show that the total reduction ratio should be higher than 5.2 when the line pipes of grade B,grade 20 and other general seamless pipe were rolled with continuously casting round billet.And the total reduction ratio should be higher than 10.2 and the grain size should be controlled more than grade 7 for casing of oil countryside tubular goods(OCTG).
文摘无缝钢管为海底油气输送管道的一种常用类型,其在制造过程中可能出现各种质量问题。本文针对某钢厂生产的φ168.3 mm×14.3 mm X65QO海底无缝钢管出现热处理后屈服强度偏低的问题,从化学成分、生产设备、工艺参数等方面进行了调查分析,最终通过多次试验提出了“加大外淋水流量和提高淬火温度”的解决方案,从而保证了钢管的质量和管线的本质安全,为后续类似问题的解决提供了参考。