期刊文献+
共找到415篇文章
< 1 2 21 >
每页显示 20 50 100
A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating
1
作者 Rongrong Ren Luyang Su +2 位作者 Xinyu Meng Jianfang Wang Meng Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期429-458,共30页
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid... With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted. 展开更多
关键词 large-scale group decision making social network updating trust relationship group consensus feedback mechanism
下载PDF
Assessment of International GNSS Service Global Ionosphere Map products over China region based on measurements from the Crustal Movement Observation Network of China 被引量:1
2
作者 Jin Hu HaiBing Ruan +2 位作者 FuQing Huang ShengYang Gu XianKang Dou 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期400-407,共8页
The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G... The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions. 展开更多
关键词 International gnss Service(IGS)Global Ionosphere Maps(GIM) Crustal Movement Observation network of China(CMONOC) total electron content(TEC) data assessment
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
3
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification large-scale trainingcorpus LONG SHORT-TERM memory recurrentneural network
下载PDF
A Game-Theoretic Perspective on Resource Management for Large-Scale UAV Communication Networks 被引量:8
4
作者 Jiaxin Chen Ping Chen +3 位作者 Qihui Wu Yuhua Xu Nan Qi Tao Fang 《China Communications》 SCIE CSCD 2021年第1期70-87,共18页
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou... As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications. 展开更多
关键词 large-scale UAV communication networks resource management game-theoretic model
下载PDF
Efficient Routing Protection Algorithm in Large-Scale Networks 被引量:3
5
作者 Haijun Geng Han Zhang Yangyang Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第2期1733-1744,共12页
With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have... With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information,which reduces the network’s availability greatly and affects the Internet service provider’s(ISP’s)service quality and reputation seriously.Therefore,improving network availability has become an urgent problem.As such,the Internet Engineering Task Force suggests the use of downstream path criterion(DC)to address all single-link failure scenarios.However,existing methods for implementing DC schemes are time consuming,require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant,especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC. 展开更多
关键词 large-scale network shortest path tree time complexity network failure real-time and mission-critical applications
下载PDF
Robust Virtual Network Embedding Based on Component Connectivity in Large-Scale Network 被引量:4
6
作者 Xiaojuan Wang Mei Song +1 位作者 Deyu Yuan Xiangru Liu 《China Communications》 SCIE CSCD 2017年第10期164-179,共16页
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris... Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics. 展开更多
关键词 large-scale network component connectivity virtual network embedding SDN
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
7
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) large-scale model Self-supervised learning Deep neural network
下载PDF
Sewage flow optimization algorithm for large-scale urban sewer networks based on network community division 被引量:1
8
作者 Lihui CEN Yugeng XI 《控制理论与应用(英文版)》 EI 2008年第4期372-378,共7页
By considering the flow control of urban sewer networks to minimize the electricity consumption of pumping stations, a decomposition-coordination strategy for energy savings based on network community division is deve... By considering the flow control of urban sewer networks to minimize the electricity consumption of pumping stations, a decomposition-coordination strategy for energy savings based on network community division is developed in this paper. A mathematical model characterizing the steady-state flow of urban sewer networks is first constructed, consisting of a set of algebraic equations with the structure transportation capacities captured as constraints. Since the sewer networks have no apparent natural hierarchical structure in general, it is very difficult to identify the clustered groups. A fast network division approach through calculating the betweenness of each edge is successfully applied to identify the groups and a sewer network with arbitrary configuration could be then decomposed into subnetworks. By integrating the coupling constraints of the subnetworks, the original problem is separated into N optimization subproblems in accordance with the network decomposition. Each subproblem is solved locally and the solutions to the subproblems are coordinated to form an appropriate global solution. Finally, an application to a specified large-scale sewer network is also investigated to demonstrate the validity of the proposed algorithm. 展开更多
关键词 large-scale sewer network BETWEENNESS network community division Decomposition and coordination
下载PDF
Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks 被引量:1
9
作者 Huan-feng DUAN Guo-ping YU 《Water Science and Engineering》 EI CAS 2010年第1期23-35,共13页
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by... With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods. 展开更多
关键词 large-scale networks hydraulic simulation graph theory fundamental loop spanning tree EFFICIENCY
下载PDF
Intelligent Networking Technology and Experimental Demonstration of Large-Scale Heterogeneous Optical Networks
10
作者 赵永利 张杰 +2 位作者 张民 纪越峰 顾畹仪 《China Communications》 SCIE CSCD 2011年第7期12-20,共9页
A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). ... A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE. 展开更多
关键词 optical networks DRE ROUTING HETEROGENEOUS large-scale
下载PDF
A Summary of the Large-Scale Access Convergence Network Structure
11
作者 LAN Julong ZHANG Xiaohui +5 位作者 SHEN Juan HU Yuxiang WANG Xiang MAO Zhenshan WANG Lingqiang LIANG Dong 《China Communications》 SCIE CSCD 2016年第S1期1-5,共5页
Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified mult... Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control. 展开更多
关键词 network architecture large-scale ACCESS CONVERGENCE flat structure ultra-small HOPS
下载PDF
An Adaptive Sliding Mode Tracking Controller Using BP Neural Networks for a Class of Large-scale Nonlinear Systems
12
作者 刘子龙 田方 张伟军 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期753-758,共6页
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece... A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller. 展开更多
关键词 BP NEURAL networks SLIDING mode control large-scale nonlinear systems uncertainty dynamics
下载PDF
Design of High Precision Horizontal Control Network for Large-Scale Hydropower Project
13
作者 ZHANG Zhenglu LUO Changlin +1 位作者 DENG Yong XIE Niansheng 《Geo-Spatial Information Science》 2006年第4期235-239,共5页
A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial n... A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial network, GPS network and combination network are discussed for horizontal control network design of Xiangjiaba Dam in view of precision, reliability, coordinate and outlay in detail. 展开更多
关键词 large-scale hydropower project terrestrial network GPS network combination network of GPS and high precise distance measurements with EDM
下载PDF
ROBUST SLIDING MODE DECENTRALIZED CONTROL FOR A CLASS OF NONLINEAR INTERCONNECTED LARGE-SCALE SYSTEM WITH NEURAL NETWORKS
14
作者 CHENMou JIANGChang-sheng CHENWen-hua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期304-310,共7页
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is pro... A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method. 展开更多
关键词 nonlinear large-scale systems neural networks sliding mode control decentralized control
下载PDF
Energy-Efficient Routing Algorithm Based on Multipath Routing in Large-Scale Networks
15
作者 Haijun Geng Qidong Zhang +4 位作者 Jiangyuan Yao Wei Wang Zikun Jin Han Zhang Yangyang Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第8期2029-2039,共11页
A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic... A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability. 展开更多
关键词 Energy-efficient routing multipath routing link criticality model energy-saving ratio large-scale network
下载PDF
Active Queue Management within Large-Scale Wired Networks
16
作者 Ping-Min Hsu Chun-Liang Lin Ching-Han Yu 《International Journal of Communications, Network and System Sciences》 2011年第4期241-248,共8页
Signal transmission control protocol sources with the objective of managing queue utilization and delay is actually a feedback control problem in active queue management (AQM) core routers. This paper extends AQM cont... Signal transmission control protocol sources with the objective of managing queue utilization and delay is actually a feedback control problem in active queue management (AQM) core routers. This paper extends AQM control design for single network systems to large-scale wired network systems with time delays at each communication channel. A system model consisted of several local networks is first constructed. The stability condition guaranteeing overall stability is subsequently derived using Lyapunov stability theory. The results developed have been successfully verified on a network simulator. 展开更多
关键词 large-scale System network Control STABILITY TIME DELAY
下载PDF
L3SN: A Level-Based, Large-Scale, Longevous Sensor Network System for Agriculture Information Monitoring
17
作者 Yongcai Wang Yuexuan Wang +3 位作者 Xiao Qi Liwen Xu Jinbiao Chen Guanyu Wang 《Wireless Sensor Network》 2010年第9期655-660,共6页
We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands he... We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands hectares coverage, years of time monitoring and the adverse environment. The system architecture, the agriculture sensor device, the mesh protocol, and the web-based information processing platform are introduced. We also presented some implementation experience. The mesh protocol (LayerMesh) is highlighted, in which “stair scheduling” and “distributed dynamic load-balancing” are proposed to response the scalability, longevity and adaptivity requirements. We believe the design of L3SN is useful to many other large-scale, longevous applications such as hydrologic monitoring, geological monitoring etc. 展开更多
关键词 WIRELESS SENSOR network AGRICULTURE Information MONITORING large-scale LONGEVITY Adaptivity
下载PDF
ZTE Deploys the World's First Large-Scale Commercial GPON-Based Mobile Backhaul Network for TELKOM Indonesia
18
《ZTE Communications》 2010年第4期14-14,共1页
ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, announced on November 23, 2010 that it has successfully completed the world's first large-scale commercial GPON-based ... ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, announced on November 23, 2010 that it has successfully completed the world's first large-scale commercial GPON-based mobile backhaul network for TELKOM Indonesia, a full-service telecom operator in Indonesia. The project is the first such large-scale commercialization of GPON backhaul technology, 展开更多
关键词 ZTE Deploys the World’s First large-scale Commercial GPON-Based Mobile Backhaul network for TELKOM Indonesia GPON World
下载PDF
Visualization Analysis Framework for Large-Scale Software Based on Software Network
19
作者 Shengbing Ren Mengyu Jia +1 位作者 Fei Huang Yuan Liu 《国际计算机前沿大会会议论文集》 2017年第1期185-187,共3页
Large-scale software systems,which are the most sophisticated human-designed objects,play more and more important role in our daily life.Consequently effective analysis for large-scale software has become an urgent pr... Large-scale software systems,which are the most sophisticated human-designed objects,play more and more important role in our daily life.Consequently effective analysis for large-scale software has become an urgent problem to be solved with the increasing issues of software security and the continuous expansion of software applications scope.For the characteristics of large scale and complex structure in large-scale software,the traditional software analysis techniques are difficult to be used.With the problem of difficulty in presentation,storage and low efficiency in the process of large-scale software analysis,the visualization analysis framework for large-scale software based on software network,named SoNet,is proposed with the combination of complex network theory and program slicing technique.Constraint logic attributes of the programs will be obtained through source code parsing.Then we will construct a global view by the theory of complex network after extracting software structure and behavior,improving user’s perception of software architecture in a macro perspective.Use case slicing will be realized combined with Redis cluster,and accessibility analysis when given a keyword to be analyzed.We evaluate our prototype implementation on an open source software project named SoundSea in Github,and the results suggest that our approach can realize the analysis for large-scale software. 展开更多
关键词 large-scale SOFTWARE SOFTWARE network VISUALIZATION CONSTRAINT LOGIC
下载PDF
应用卷积神经网络VGG16的星载GNSS-R海冰检测 被引量:1
20
作者 胡媛 华曦帆 +1 位作者 刘卫 江志豪 《遥感信息》 CSCD 北大核心 2024年第2期28-35,共8页
针对全球卫星导航系统反射计(global navigation satellite system-reflection,GNSS-R)海冰检测中延迟-多普勒图(delay-Doppler map,DDM)数据噪声大、消融期精度低等问题,提出将VGG16卷积神经网络模型应用于海冰检测。通过深层的网络结... 针对全球卫星导航系统反射计(global navigation satellite system-reflection,GNSS-R)海冰检测中延迟-多普勒图(delay-Doppler map,DDM)数据噪声大、消融期精度低等问题,提出将VGG16卷积神经网络模型应用于海冰检测。通过深层的网络结构提取DDM多层次特征进行海冰海水分类,以提高海冰检测的精度和稳定性。实验结果表明,与美国国家海洋和大气管理局地表类型数据对比,所提出的基于VGG16海冰检测方法检测准确率为98.02%,有效提升了海冰检测的准确率和稳定性。 展开更多
关键词 海冰遥感 海冰检测 星载gnss-R 卷积神经网络 延迟-多普勒图 NOAA
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部