Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aimin...Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition....The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.展开更多
In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic tra...In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well.展开更多
Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has b...Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification.展开更多
Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the und...Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.展开更多
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S...Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.展开更多
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b...To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.展开更多
underwater topography is one of oceanic features detected by Synthetic Aperture Radar.Underwater topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging....underwater topography is one of oceanic features detected by Synthetic Aperture Radar.Underwater topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging.Thus under the same wind field condition,SAR images for the same area acquired at different time include different information of the underwater topography.To utilize synchronously SAR images acquired at different time for the underwater topography SAR detection and improve the precision of detection,based on the detection model of underwater topography with single SAR image and the periodicity of tidal current,a detection model of underwater topography with a series of SAR images acquired at different time is developed by combing with tide and tidal current numerical simulation.To testify the feasibility of the presented model,Taiwan Shoal located at the south outlet of Taiwan Strait is selected as study area and three SAR images are used in the underwater topography detection.The detection results are compared with the field observation data of water depth carried out by R/V Dongfanghong 2,and the errors of the detection are compared with those of the single SAR image.All comparisons show that the detection model presented in the paper improves the precision of underwater topography SAR detection,and the presented model is feasible.展开更多
An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance i...An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese...Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Ba...In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.展开更多
Satellite remote sensing technique offers a wide range of information, and is one of the tools for ocean wave observation. This paper discusses the limitations of Synthetic Aperture Radar (SAR) images in wave field an...Satellite remote sensing technique offers a wide range of information, and is one of the tools for ocean wave observation. This paper discusses the limitations of Synthetic Aperture Radar (SAR) images in wave field analysis. It is found that the wave field analysis is affected by the gray value distribution of image and the relationship between satellite travel and wave propagation directions. Since human activities and coastal engineering are performed in nearshore areas, some issues are discussed for nearshore SAR image analysis. Several case studies show that the wave parameters estimated from nearshore SAR images are quite different from in situ measurements, suggesting that the wave information derived from nearshore SAR images cannot appropriately represent the wave characteristics. One of the reasons is that the wave field is non homogeneous in the nearshore area.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean...Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°-70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model – the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.展开更多
基金The Key R&D Project of Hainan Province under contract No.ZDYF2023SHFZ097the National Natural Science Foundation of China under contract No.42376180。
文摘Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
文摘The traditional synthetic aperture radar(SAR) image recognition techniques focus on the electro magnetic (EM) scattering centers, ignoring the important role of the shadow information on the SAR image recognition. It is difficult to classify targets by the shadow information independently, because the shadow shape is dependent on the radar aspect angle, the depression angle and the resolution. Moreover, the shadow shapes of different targets are similar. When the multiple SAR images of one target from different aspects are available, the performance of the target recognition can be improved. Aimed at the problem, a multi-aspect SAR image recognition technique based on the shadow information is developed. It extracts shadow profiles from SAR images, and takes chain codes as the feature vectors of targets. Then, feature vectors on multiple aspects of the same target are combined with feature sequences, and the hidden Markov model (HMM) is applied to the feature sequences for the target recognition. The simulation result shows the effectiveness of the method.
文摘In order to suppress the speckle appearing in synthesis aperture radar (SAR) images, a novel speckle reduction method based on wavelet domain hidden Markov tree (HMT) was proposed. First, the image was logarithmic transformed to change the statistical property of the speckles. Then an HMT was constructed in the correspondent wavelet domain. Based on this model, the image signal was restored by maximum likelihood estimation and speckle noise was suppressed. Simulating SAR images had shown that the performance of the filter is satisfactory for both speckle smoothing and edges presentation, and for generating visually natural images as well.
基金The National Science Foundation for Young Scientists of China under contract No.41306193the National Special Research Fund for Non-Profit Marine Sector of China under contract No.201105016the ESA-MOST Dragon 3 Cooperation Programme under contract No.10501
文摘Sea ice as a disaster has recently attracted a great deal of attention in China. Its monitoring has become a routine task for the maritime sector. Remote sensing, which depends mainly on SAR and optical sensors, has become the primary means for sea-ice research. Optical images contain abundant sea-ice multi-spectral in-formation, whereas SAR images contain rich sea-ice texture information. If the characteristic advantages of SAR and optical images could be combined for sea-ice study, the ability of sea-ice monitoring would be im-proved. In this study, in accordance with the characteristics of sea-ice SAR and optical images, the transfor-mation and fusion methods for these images were chosen. Also, a fusion method of optical and SAR images was proposed in order to improve sea-ice identification. Texture information can play an important role in sea-ice classification. Haar wavelet transformation was found to be suitable for the sea-ice SAR images, and the texture information of the sea-ice SAR image from Advanced Synthetic Aperture Radar (ASAR) loaded on ENVISAT was documented. The results of our studies showed that, the optical images in the hue-intensi-ty-saturation (HIS) space could reflect the spectral characteristics of the sea-ice types more efficiently than in the red-green-blue (RGB) space, and the optical image from the China-Brazil Earth Resources Satellite (CBERS-02B) was transferred from the RGB space to the HIS space. The principal component analysis (PCA) method could potentially contain the maximum information of the sea-ice images by fusing the HIS and texture images. The fusion image was obtained by a PCA method, which included the advantages of both the sea-ice SAR image and the optical image. To validate the fusion method, three methods were used to evaluate the fused image, i.e., objective, subjective, and comprehensive evaluations. It was concluded that the fusion method proposed could improve the ability of image interpretation and sea-ice identification.
文摘Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
基金supported by the Specialized Research Found for the Doctoral Program of Higher Education (20070699013)the Natural Science Foundation of Shaanxi Province (2006F05)the Aeronautical Science Foundation (05I53076)
文摘Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)+2 种基金the Open Project Foundation of Key Lab of Port,Waterway and Sedimentation Engineering of the Ministry of Transportthe State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.
基金The National Natural Science Foundation of China under contract Nos 60672159 and 60890075the State Oceanic Administration Science Foundation for Youths under contract No.2009421the Special Funds for Marine Commonweal Research under contract No.200705027
文摘underwater topography is one of oceanic features detected by Synthetic Aperture Radar.Underwater topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging.Thus under the same wind field condition,SAR images for the same area acquired at different time include different information of the underwater topography.To utilize synchronously SAR images acquired at different time for the underwater topography SAR detection and improve the precision of detection,based on the detection model of underwater topography with single SAR image and the periodicity of tidal current,a detection model of underwater topography with a series of SAR images acquired at different time is developed by combing with tide and tidal current numerical simulation.To testify the feasibility of the presented model,Taiwan Shoal located at the south outlet of Taiwan Strait is selected as study area and three SAR images are used in the underwater topography detection.The detection results are compared with the field observation data of water depth carried out by R/V Dongfanghong 2,and the errors of the detection are compared with those of the single SAR image.All comparisons show that the detection model presented in the paper improves the precision of underwater topography SAR detection,and the presented model is feasible.
基金A Postdoctoral Science Foundation of China (J63104020156) National Defence Foundation of China
文摘An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(No.61471136)the Special Project for Global Change and Air-sea Interaction of Ministry of Natural Resources(No.GASI-02-SCS-YGST2-04)the Chinese Association of Ocean Mineral Resources R&D(No.DY135-E2-4)
文摘Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金Projects 40771143 supported by the National Natural Science Foundation of China2007AA12Z162 by the Hi-tech Research and Development Program of China
文摘In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.
文摘Satellite remote sensing technique offers a wide range of information, and is one of the tools for ocean wave observation. This paper discusses the limitations of Synthetic Aperture Radar (SAR) images in wave field analysis. It is found that the wave field analysis is affected by the gray value distribution of image and the relationship between satellite travel and wave propagation directions. Since human activities and coastal engineering are performed in nearshore areas, some issues are discussed for nearshore SAR image analysis. Several case studies show that the wave parameters estimated from nearshore SAR images are quite different from in situ measurements, suggesting that the wave information derived from nearshore SAR images cannot appropriately represent the wave characteristics. One of the reasons is that the wave field is non homogeneous in the nearshore area.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
基金Supported by National Natural Science Foundation of China (Nos. 60672159 & 60890075)the State Oceanic Administration Marine Science Foundation for Youths (No.2009421)+1 种基金the Special Funds for Marine Commonweal Research (No. 200705027)the Special Funds for Basic Scientific Research Project of the First Institute of Oceanography, S.O.A (No. 2008T29)
文摘Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°-70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model – the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.