Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for ...Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.展开更多
The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weat...The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.展开更多
Non-invasive observation of spatiotemporal activity of large neural populations distributed over entire brains is a longstanding goal of neuroscience.We developed a volumetric multispectral optoacoustic tomography pla...Non-invasive observation of spatiotemporal activity of large neural populations distributed over entire brains is a longstanding goal of neuroscience.We developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains.It can record 100 volumetric frames per second across scalable fields of view ranging between 50 and 1000 mm^(3) with respective spatial resolution of 35–200μm.Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically encoded calcium indicator GCaMP5G demonstrate,for the first time,the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the longstanding penetration barrier of optical imaging in scattering brains.The newly developed platform thus offers unprecedented capabilities for functional whole-brain observations of fast calcium dynamics;in combination with optoacoustics'well-established capacity for resolving vascular hemodynamics,it could open new vistas in the study of neural activity and neurovascular coupling in health and disease.展开更多
基金This research was financially supported by China Geological Survey Project(DD20189114,DD20190129)the Basic Scientific Research Project of the Chinese Academy of Geological Sciences(JKY1722,YWF201903-01 and JYYWF20180501).
文摘Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2016-04-03the National Key Research and Development Program of China under contract No.2016YFC1402701
文摘The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.
基金support from the European Research Council ERC-2010-StG-260991(DR)and ERC-2012-StG_20111109(AL and GGW)the National Institute of Health R21-EY026382-01(DR and SS)+1 种基金the German-Israeli Foundation(GIF)for Scientific Research and Development 1142-46.10/2011(DR and SS)the Helmholtz Association of German Research Centers and the Technische Universität München(DR and GGW)。
文摘Non-invasive observation of spatiotemporal activity of large neural populations distributed over entire brains is a longstanding goal of neuroscience.We developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains.It can record 100 volumetric frames per second across scalable fields of view ranging between 50 and 1000 mm^(3) with respective spatial resolution of 35–200μm.Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically encoded calcium indicator GCaMP5G demonstrate,for the first time,the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the longstanding penetration barrier of optical imaging in scattering brains.The newly developed platform thus offers unprecedented capabilities for functional whole-brain observations of fast calcium dynamics;in combination with optoacoustics'well-established capacity for resolving vascular hemodynamics,it could open new vistas in the study of neural activity and neurovascular coupling in health and disease.