This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in d...This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.展开更多
为在满足换电需求的前提下,结合电池的物流配送尽可能降低充电站的投资、运行成本,优化配置集中型充电站动力电池和充电机容量,首先给出基于一定假设条件的电池组配送流程,建立了电池组配送模型。然后,结合换电需求和物流配送建立了集...为在满足换电需求的前提下,结合电池的物流配送尽可能降低充电站的投资、运行成本,优化配置集中型充电站动力电池和充电机容量,首先给出基于一定假设条件的电池组配送流程,建立了电池组配送模型。然后,结合换电需求和物流配送建立了集中充电站运行状态仿真模型,用于目标函数的计算;构建了以集中充电站的年费用最小为目标函数,以日换电需求和充电站规模为约束的数学模型;采用细菌群体趋药性(bacterial colony chemotaxis,BCC)算法求解该模型。最后分析了不同配送次数下,直接充电、错峰充电和电池入网(battery to grid,B2G)充电3种充电方式下集中充电站的容量配置方案;并与等间隔配送方式下所得结果进行对比。算例分析表明:合理的配送计划可以提高充电站运营的经济性;充电方式也是影响容量规划的关键因素。展开更多
基金supported in part by National Natural Science Foundation of China(No.52007123).
文摘This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.
文摘为在满足换电需求的前提下,结合电池的物流配送尽可能降低充电站的投资、运行成本,优化配置集中型充电站动力电池和充电机容量,首先给出基于一定假设条件的电池组配送流程,建立了电池组配送模型。然后,结合换电需求和物流配送建立了集中充电站运行状态仿真模型,用于目标函数的计算;构建了以集中充电站的年费用最小为目标函数,以日换电需求和充电站规模为约束的数学模型;采用细菌群体趋药性(bacterial colony chemotaxis,BCC)算法求解该模型。最后分析了不同配送次数下,直接充电、错峰充电和电池入网(battery to grid,B2G)充电3种充电方式下集中充电站的容量配置方案;并与等间隔配送方式下所得结果进行对比。算例分析表明:合理的配送计划可以提高充电站运营的经济性;充电方式也是影响容量规划的关键因素。