期刊文献+
共找到10,213篇文章
< 1 2 250 >
每页显示 20 50 100
METHOD FOR QUICKLY INFERRING THE MECHANISMS OF LARGE-SCALE COMPLEX NETWORKS BASED ON THE CENSUS OF SUBGRAPH CONCENTRATIONS 被引量:1
1
作者 Bo YANG Xiaorong CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第2期252-259,共8页
A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a cens... A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method. 展开更多
关键词 large-scale complex networks mechanism-inferring model evaluation subgraph census.
原文传递
A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating
2
作者 Rongrong Ren Luyang Su +2 位作者 Xinyu Meng Jianfang Wang Meng Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期429-458,共30页
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid... With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted. 展开更多
关键词 large-scale group decision making social network updating trust relationship group consensus feedback mechanism
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
3
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification large-scale trainingcorpus LONG SHORT-TERM memory recurrentneural network
下载PDF
A Game-Theoretic Perspective on Resource Management for Large-Scale UAV Communication Networks 被引量:9
4
作者 Jiaxin Chen Ping Chen +3 位作者 Qihui Wu Yuhua Xu Nan Qi Tao Fang 《China Communications》 SCIE CSCD 2021年第1期70-87,共18页
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou... As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications. 展开更多
关键词 large-scale UAV communication networks resource management game-theoretic model
下载PDF
Efficient Routing Protection Algorithm in Large-Scale Networks 被引量:3
5
作者 Haijun Geng Han Zhang Yangyang Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第2期1733-1744,共12页
With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have... With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information,which reduces the network’s availability greatly and affects the Internet service provider’s(ISP’s)service quality and reputation seriously.Therefore,improving network availability has become an urgent problem.As such,the Internet Engineering Task Force suggests the use of downstream path criterion(DC)to address all single-link failure scenarios.However,existing methods for implementing DC schemes are time consuming,require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant,especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC. 展开更多
关键词 large-scale network shortest path tree time complexity network failure real-time and mission-critical applications
下载PDF
Migration Networks Pattern of China’s Floating Population from the Perspective of Complex Network
6
作者 LIU Wangbao CHEN Ranran 《Chinese Geographical Science》 SCIE CSCD 2024年第2期327-341,共15页
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter... Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace. 展开更多
关键词 complex network floating population migration network spatial pattern community structure
下载PDF
A novel complex-high-order graph convolutional network paradigm:ChyGCN
7
作者 郑和翔 苗书宇 顾长贵 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期665-672,共8页
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t... In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures. 展开更多
关键词 raph convolutional network complex modeling complex hypergraph
下载PDF
Ecological network analysis reveals complex responses of tree species life stage interactions to stand variables
8
作者 Hengchao Zou Huayong Zhang Tousheng Huang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16... Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities. 展开更多
关键词 Tree interactions Life stages Interaction networks Ecological complexity
下载PDF
Channel-Feedback-Free Transmission for Downlink FD-RAN:A Radio Map Based Complex-Valued Precoding Network Approach
9
作者 Zhao Jiwei Chen Jiacheng +3 位作者 Sun Zeyu Shi Yuhang Zhou Haibo Xuemin(Sherman)Shen 《China Communications》 SCIE CSCD 2024年第4期10-22,共13页
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ... As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively. 展开更多
关键词 beamforming complex neural networks deep learning FD-RAN
下载PDF
Identify information sources with different start times in complex networks based on sparse observers
10
作者 Yuan-Zhang Deng Zhao-Long Hu +3 位作者 Feilong Lin Chang-Bing Tang Hui Wang Yi-Zhen Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期467-479,共13页
The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate disseminatio... The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate dissemination at distinct initial moments.Although there are many research results of multi-source identification,the challenge of locating sources with varying initiation times using a limited subset of observational nodes remains unresolved.In this study,we provide the backward spread tree theorem and source centrality theorem,and develop a backward spread centrality algorithm to identify all the information sources that trigger the spread at different start times.The proposed algorithm does not require prior knowledge of the number of sources,however,it can estimate both the initial spread moment and the spread duration.The core concept of this algorithm involves inferring suspected sources through source centrality theorem and locating the source from the suspected sources with linear programming.Extensive experiments from synthetic and real network simulation corroborate the superiority of our method in terms of both efficacy and efficiency.Furthermore,we find that our method maintains robustness irrespective of the number of sources and the average degree of network.Compared with classical and state-of-the art source identification methods,our method generally improves the AUROC value by 0.1 to 0.2. 展开更多
关键词 complex networks information spread source identification backward spread centricity
下载PDF
Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community–resident complex networks
11
作者 杨鹏 范如国 +1 位作者 王奕博 张应青 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期158-169,共12页
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha... We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control. 展开更多
关键词 propagation dynamics complex networks public health events community structure
下载PDF
Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir
12
作者 Hao-Chuan Zhang Yong Tang +5 位作者 You-Wei He Yong Qin Jian-Hong Luo Yu Sun Ning Wang De-Qiang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1018-1031,共14页
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth... The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks. 展开更多
关键词 Unconventional oil reservoir complex fracture network Hydrocarbon gas huff-n-puff Parameter optimization Numerical simulation
下载PDF
Earthquake disaster chain model based on complex networks for urban engineering systems
13
作者 Lu Zheng Yan Deyu Jiang Huanjun 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期230-237,共8页
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d... According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters. 展开更多
关键词 EARTHQUAKE disaster chain seismic resilience secondary disaster complex network VULNERABILITY risk level
下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
14
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
下载PDF
Robust Virtual Network Embedding Based on Component Connectivity in Large-Scale Network 被引量:4
15
作者 Xiaojuan Wang Mei Song +1 位作者 Deyu Yuan Xiangru Liu 《China Communications》 SCIE CSCD 2017年第10期164-179,共16页
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris... Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics. 展开更多
关键词 large-scale network component connectivity virtual network embedding SDN
下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
16
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
17
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) large-scale model Self-supervised learning Deep neural network
下载PDF
Sewage flow optimization algorithm for large-scale urban sewer networks based on network community division 被引量:1
18
作者 Lihui CEN Yugeng XI 《控制理论与应用(英文版)》 EI 2008年第4期372-378,共7页
By considering the flow control of urban sewer networks to minimize the electricity consumption of pumping stations, a decomposition-coordination strategy for energy savings based on network community division is deve... By considering the flow control of urban sewer networks to minimize the electricity consumption of pumping stations, a decomposition-coordination strategy for energy savings based on network community division is developed in this paper. A mathematical model characterizing the steady-state flow of urban sewer networks is first constructed, consisting of a set of algebraic equations with the structure transportation capacities captured as constraints. Since the sewer networks have no apparent natural hierarchical structure in general, it is very difficult to identify the clustered groups. A fast network division approach through calculating the betweenness of each edge is successfully applied to identify the groups and a sewer network with arbitrary configuration could be then decomposed into subnetworks. By integrating the coupling constraints of the subnetworks, the original problem is separated into N optimization subproblems in accordance with the network decomposition. Each subproblem is solved locally and the solutions to the subproblems are coordinated to form an appropriate global solution. Finally, an application to a specified large-scale sewer network is also investigated to demonstrate the validity of the proposed algorithm. 展开更多
关键词 large-scale sewer network BETWEENNESS network community division Decomposition and coordination
下载PDF
Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks 被引量:1
19
作者 Huan-feng DUAN Guo-ping YU 《Water Science and Engineering》 EI CAS 2010年第1期23-35,共13页
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by... With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods. 展开更多
关键词 large-scale networks hydraulic simulation graph theory fundamental loop spanning tree EFFICIENCY
下载PDF
Nonlinear Relationship and Its Evolutionary Trace between Node Degree and Average Path Length of China Aviation Network Based on Complex Network
20
作者 Cheng Xiangjun Zhang Xiaoxuan Li Yangqi 《Journal of Traffic and Transportation Engineering》 2024年第1期11-22,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the node degree and the average path length of China aviation network in 1988,1994,2001... In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the node degree and the average path length of China aviation network in 1988,1994,2001,2008 and 2015 was studied.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the airline as the edge of the network.On the basis of the statistical data,the node average path length of China aviation network in 1988,1994,2001,2008 and 2015 was calculated.Through regression analysis,it was found that the node degree had a logarithmic relationship with the average length of node path,and the two parameters of the logarithmic relationship had linear evolutionary trace.Key word:China aviation network,complex network,node degree,average length of node path,logarithmic relationship,evolutionary trace. 展开更多
关键词 China aviation network complex network node degree average length of node path logarithmic relationship evolutionary trace.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部