Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the co...Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects.展开更多
Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences ...Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences the overall safety of the device.When the ratio of the diameter of a horizontal cylinder in such interceptors to the incident wavelength is larger than 0.25,the wave force can be calculated by using the diffraction theory,by considering the problem as that of the interaction between the waves and a partially immersed large-scale horizontal cylinder.In this study,an analytical approach to calculate the wave force on a partially immersed large-scale horizontal cylinder was formulated by using the stepwise approximation method.Physical model tests were conducted to investigate the effects of different factors(wave height,period,and immersion depth)on the wave force on a large-scale horizontal cylinder under conditions involving short-period waves.The results show that both horizontal and vertical wave forces on the cylinder increase as the wave height(immersion depth)increases in most cases.The vertical wave force decreases with the decrease of the period.For the horizontal wave force,it increases with the decrease of the period when the wavelength is larger than the diameter of the cylinder and decreases with the decrease of the period when the wavelength is smaller than the diameter of the cylinder.展开更多
The lifting and lowering mechanism of the roll box of the saw gin, being an integral part of the ginning process, is used when starting the electric motor of the saw cylinder until its rated speed is reached to preven...The lifting and lowering mechanism of the roll box of the saw gin, being an integral part of the ginning process, is used when starting the electric motor of the saw cylinder until its rated speed is reached to prevent an increase in the load current on it, as well as to start the ginning process. The article defines the kinematics of the movement, and also studies the regularity of the movement of the roll box of the saw gin when lifting it with the help of a pneumatic drive. The kinematics of the roll box movement was determined through experimental studies. Knowing the equation of motion, using the second-order Lagrange equation, the regularity of the change in the lifting force of the roll box was determined. Here the system is closed, its degree of freedom is equal to one. The angle of rotation of the roll box is taken as a generalized coordinate. Numerical results were obtained using the Matlab software environment. The theoretical analysis and graphs for determining the lifting force of the roll box are presented. To study the kinematics of lifting the roll box, a method and a test bench have been developed. According to him, when the roll box was raised, its movement was recorded on video, the image was processed using the After Effect and CorelDraw programs, and the movement of the rod attachment point to the roll box was determined. And also the equation for changing the angle of rotation of the roll box is determined using the Matlab Curve Fiting program.展开更多
During strip casting,the thickness deviation of casting strip directly affects the quality of the hot-rolled sheet because the casting strip needs to be rolled only once.To accurately control the gap between casting r...During strip casting,the thickness deviation of casting strip directly affects the quality of the hot-rolled sheet because the casting strip needs to be rolled only once.To accurately control the gap between casting rolls and reduce the thickness deviation of the casting strip,a conceptual design of a prestressed twin-roll caster is proposed herein;this caster involves the setting of a constant pressure balancing cylinder between the chocks of two casting rolls.The balancing cylinder hydraulic system adopts a three-way servo valve that controls the hydraulic cylinder.The parameters of the hydraulic power components are determined using the principle of optimal power matching,and the hydraulic system model of the balancing cylinder is thus established.The dynamic analysis and simulation of the hydraulic system are performed using finite element model to obtain relevant evaluation indexes.Finally,the hydraulic system is corrected using proportional-integral-derivative (PID) correction to achieve a well-controlled effect.Thus,the engineering requirements of the strip casting process can be met.展开更多
基金This project is supported by Fok Ying Tung Education Foundation and National Natural Science Foundation of China
文摘Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects.
基金This work was financially supported by the Marine Economic Development Subsidy Fund Project in Fujian Province of China(Grant No.FJHJF-L-2019-8)2020 Xiamen Youth Innovation Fund Project of China(Grant No.3502Z20206069).
文摘Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences the overall safety of the device.When the ratio of the diameter of a horizontal cylinder in such interceptors to the incident wavelength is larger than 0.25,the wave force can be calculated by using the diffraction theory,by considering the problem as that of the interaction between the waves and a partially immersed large-scale horizontal cylinder.In this study,an analytical approach to calculate the wave force on a partially immersed large-scale horizontal cylinder was formulated by using the stepwise approximation method.Physical model tests were conducted to investigate the effects of different factors(wave height,period,and immersion depth)on the wave force on a large-scale horizontal cylinder under conditions involving short-period waves.The results show that both horizontal and vertical wave forces on the cylinder increase as the wave height(immersion depth)increases in most cases.The vertical wave force decreases with the decrease of the period.For the horizontal wave force,it increases with the decrease of the period when the wavelength is larger than the diameter of the cylinder and decreases with the decrease of the period when the wavelength is smaller than the diameter of the cylinder.
文摘The lifting and lowering mechanism of the roll box of the saw gin, being an integral part of the ginning process, is used when starting the electric motor of the saw cylinder until its rated speed is reached to prevent an increase in the load current on it, as well as to start the ginning process. The article defines the kinematics of the movement, and also studies the regularity of the movement of the roll box of the saw gin when lifting it with the help of a pneumatic drive. The kinematics of the roll box movement was determined through experimental studies. Knowing the equation of motion, using the second-order Lagrange equation, the regularity of the change in the lifting force of the roll box was determined. Here the system is closed, its degree of freedom is equal to one. The angle of rotation of the roll box is taken as a generalized coordinate. Numerical results were obtained using the Matlab software environment. The theoretical analysis and graphs for determining the lifting force of the roll box are presented. To study the kinematics of lifting the roll box, a method and a test bench have been developed. According to him, when the roll box was raised, its movement was recorded on video, the image was processed using the After Effect and CorelDraw programs, and the movement of the rod attachment point to the roll box was determined. And also the equation for changing the angle of rotation of the roll box is determined using the Matlab Curve Fiting program.
文摘During strip casting,the thickness deviation of casting strip directly affects the quality of the hot-rolled sheet because the casting strip needs to be rolled only once.To accurately control the gap between casting rolls and reduce the thickness deviation of the casting strip,a conceptual design of a prestressed twin-roll caster is proposed herein;this caster involves the setting of a constant pressure balancing cylinder between the chocks of two casting rolls.The balancing cylinder hydraulic system adopts a three-way servo valve that controls the hydraulic cylinder.The parameters of the hydraulic power components are determined using the principle of optimal power matching,and the hydraulic system model of the balancing cylinder is thus established.The dynamic analysis and simulation of the hydraulic system are performed using finite element model to obtain relevant evaluation indexes.Finally,the hydraulic system is corrected using proportional-integral-derivative (PID) correction to achieve a well-controlled effect.Thus,the engineering requirements of the strip casting process can be met.