The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and deve...The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures.展开更多
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the wid...The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.展开更多
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi...We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,a...Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions.Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome(AIDS)epidemic model(AEM).Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios.Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191%in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections.Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306%by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections.Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan.Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence.Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
The control of highly contagious disease spreading in campuses is a critical challenge.In residential universities,students attend classes according to a curriculum schedule,and mainly pack into classrooms,dining hall...The control of highly contagious disease spreading in campuses is a critical challenge.In residential universities,students attend classes according to a curriculum schedule,and mainly pack into classrooms,dining halls and dorms.They move from one place to another.To simulate such environments,we propose an agent-based susceptible–infected–recovered model with time-varying heterogeneous contact networks.In close environments,maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention.It can be easily realized by using larger classrooms,adopting staggered dining hours,decreasing the number of students per dorm and so on.Their real-world influence remains uncertain.With numerical simulations,we obtain epidemic thresholds.The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingda...Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious.展开更多
Measles is a highly infectious, vaccine-preventable viral disease. Often forgotten, it is potentially fatal. Its main symptoms are: fever, cough, conjunctivitis, rhinitis and skin rash. Serological diagnoses by ELISA ...Measles is a highly infectious, vaccine-preventable viral disease. Often forgotten, it is potentially fatal. Its main symptoms are: fever, cough, conjunctivitis, rhinitis and skin rash. Serological diagnoses by ELISA test based on the detection of anti-measles virus immunoglobulins M and G (IgM and IgG), are used respectively for the confirmation of suspected cases notified by means of clinical signs of the disease in health structures of the twelve departments of the Republic of Congo involved in the epidemiological surveillance of the disease, and for the evaluation of the immunity conferred by vaccination. During 2021, 459 suspected cases of measles were reported and sampled throughout the country, despite the administration under the Expanded Routine Immunization Program (EPI), of 2 doses of the combined measles-rubella vaccine (RR1 and RR2) in 2020. The notification rate was higher in the south of the country, more precisely in the health structures of the departments of Pointe-Noire (42%) and Brazzaville (11%). During the year 2021, 459 suspected cases of measles were notified and sampled throughout the country with a high notification rate in the south of the country, more precisely in the health structures of the Pointe-Noire departments (42%) and Brazzaville (11%). The samples consisting of human blood (serum) were sent to the National Public Health Laboratory and analyzed by various ELISA tests for the detection of anti-measles immunog-lobulins M and G. The analysis of the results obtained shows that the measles virus circulated in all departments of the country. 154 cases (33.55%) were confirmed positive by IgM ELISA and 98 positive cases (63.63%) were patients vaccinated against measles. Vaccination coverage in RR1 of [50%-95% [(first dose) as well as the lowest RR2 < 50% (second dose) undoubtedly because the COVID-19 pandemic could be the cause of the high frequency of cases positive vaccinated. The non-detection of IgG immunoglobulins in vaccinated patients observed by IgG ELISA tests revealed that 63.26% of vaccinated patients were not immunized against the measles virus. These results confirm those obtained during the Elisa IgM analysis and make it possible to deduce that the quality, the number of doses not properly administered, the individual characteristics of the people as well as the poor conservation of the administered vaccine (non-compliance with the cold chain) would explain the high proportion of positive cases of vaccinated measles observed.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
It is common to observe the epidemic risk perception(ERP)and a decline in subjective well-being(SWB)in the context of public health events,such as Corona Virus Disease 2019(COVID-19).However,there have been few studie...It is common to observe the epidemic risk perception(ERP)and a decline in subjective well-being(SWB)in the context of public health events,such as Corona Virus Disease 2019(COVID-19).However,there have been few studies exploring the impact of individuals’ERP within living space on their SWB,especially from a geographical and daily activity perspective after the resumption of work and other activities following a wave of the pandemic.In this paper,we conducted a study with 789 participants in urban China,measuring their ERP within living space and examining its influence on their SWB using path analysis.The results indicated that individuals’ERP within their living space had a significant negative effect on their SWB.The density of certain types of facilities within their living space,such as bus stops,subway stations,restaurants,fast food shops,convenience shops,hospitals,and public toilets,had a significantly negative impact on their SWB,mediated by their ERP within living space.Additionally,participation in out-of-home work and other activities not only increased individuals’ERP within living space,but also strengthened its negative effect on their SWB.展开更多
We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi...We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment c...Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.展开更多
基金Supported by the Fund Program of Jiangsu Academy of Agricultural Sciences(6111689)the Planning Program of"the Twelfth Five-year-plan"in National Science and Technology for the Rural Developme+nt in China(2015BAD12B04-1.2)the Fund for Independent Innovation of Agricultural Science and Technology of Jiangsu Province[CX(16)1006]~~
文摘The application model of epidemic disease assessment technology for Web-based large-scale pig farm was expounded from the identification of epidemic disease risk factors, construction of risk assessment model and development of risk assessment system. The assessed pig farm uploaded the epidemic disease risk data information through on-line answering evaluating questionnaire to get the immediate evaluation report. The model could enhance the risk communication between pig farm veterinarian, manager and veterinary experts to help farm system understand and find disease risk factors, assess and report the potential high risk items of the pig farm in the three systems of engineering epidemic disease prevention technology, biological safety and immune monitoring, and promote the improvement and perfection of epidemic disease prevention and control measures.
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金supported by the National Natural Science Foundation of China(Grant No.22273034)the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University。
文摘The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12072340)the China Postdoctoral Science Foundation(Grant No.2022M720727)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB130).
文摘We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金funded by the Humanities and Social Sciences Research Project of Ministry of Education of China[Grant ID:18YJA840018].
文摘Objective Our study aimed to provide a comprehensive overview of the current status and dynamic trends of the human immunodeficiency virus(HIV)prevalence in Sichuan,the second most heavily affected province in China,and to explore future interventions.Methods The epidemiological,behavioral,and population census data from multiple sources were analyzed to extract inputs for an acquired immunodeficiency syndrome(AIDS)epidemic model(AEM).Baseline curves,derived from historical trends in HIV prevalence,were used,and the AEM was employed to examine future intervention scenarios.Results In 2015,the modeled data suggested an adult HIV prevalence of 0.191%in Sichuan,with an estimated 128,766 people living with HIV/AIDS and 16,983 individuals with newly diagnosed infections.Considering current high-risk behaviors,the model predicts an increase in the adult prevalence to 0.306%by 2025,projecting an estimated 212,168 people living with HIV/AIDS and 16,555 individuals with newly diagnosed infections.Conclusion Heterosexual transmission will likely emerge as the primary mode of AIDS transmission in Sichuan.Furthermore,we anticipate a stabilization in the incidence of AIDS with a concurrent increase in prevalence.Implementing comprehensive intervention measures aimed at high-risk groups could effectively alleviate the spread of AIDS in Sichuan.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871234).
文摘The control of highly contagious disease spreading in campuses is a critical challenge.In residential universities,students attend classes according to a curriculum schedule,and mainly pack into classrooms,dining halls and dorms.They move from one place to another.To simulate such environments,we propose an agent-based susceptible–infected–recovered model with time-varying heterogeneous contact networks.In close environments,maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention.It can be easily realized by using larger classrooms,adopting staggered dining hours,decreasing the number of students per dorm and so on.Their real-world influence remains uncertain.With numerical simulations,we obtain epidemic thresholds.The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金supported by the Chinese Field Epidemiology Training Program,the Research and Development of Standards and Standardization of Nomenclature in the Field of Public Health-Research Project on the Development of the Disciplines of Public Health and Preventive Medicine[242402]the Shandong Medical and Health Science and Technology Development Plan[202112050731].
文摘Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious.
文摘Measles is a highly infectious, vaccine-preventable viral disease. Often forgotten, it is potentially fatal. Its main symptoms are: fever, cough, conjunctivitis, rhinitis and skin rash. Serological diagnoses by ELISA test based on the detection of anti-measles virus immunoglobulins M and G (IgM and IgG), are used respectively for the confirmation of suspected cases notified by means of clinical signs of the disease in health structures of the twelve departments of the Republic of Congo involved in the epidemiological surveillance of the disease, and for the evaluation of the immunity conferred by vaccination. During 2021, 459 suspected cases of measles were reported and sampled throughout the country, despite the administration under the Expanded Routine Immunization Program (EPI), of 2 doses of the combined measles-rubella vaccine (RR1 and RR2) in 2020. The notification rate was higher in the south of the country, more precisely in the health structures of the departments of Pointe-Noire (42%) and Brazzaville (11%). During the year 2021, 459 suspected cases of measles were notified and sampled throughout the country with a high notification rate in the south of the country, more precisely in the health structures of the Pointe-Noire departments (42%) and Brazzaville (11%). The samples consisting of human blood (serum) were sent to the National Public Health Laboratory and analyzed by various ELISA tests for the detection of anti-measles immunog-lobulins M and G. The analysis of the results obtained shows that the measles virus circulated in all departments of the country. 154 cases (33.55%) were confirmed positive by IgM ELISA and 98 positive cases (63.63%) were patients vaccinated against measles. Vaccination coverage in RR1 of [50%-95% [(first dose) as well as the lowest RR2 < 50% (second dose) undoubtedly because the COVID-19 pandemic could be the cause of the high frequency of cases positive vaccinated. The non-detection of IgG immunoglobulins in vaccinated patients observed by IgG ELISA tests revealed that 63.26% of vaccinated patients were not immunized against the measles virus. These results confirm those obtained during the Elisa IgM analysis and make it possible to deduce that the quality, the number of doses not properly administered, the individual characteristics of the people as well as the poor conservation of the administered vaccine (non-compliance with the cold chain) would explain the high proportion of positive cases of vaccinated measles observed.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金Under the auspices of the National Natural Science Foundation of China(No.42271234,42101246,42101223)Hong Kong Research Grants Council General Research Fund Grant(No.14605920,14611621,14606922)+1 种基金Hong Kong Research Grants Council Collaborative Research Fund Grant(No.C4023-20GF)Hong Kong Research Grants Council Research Matching Grants RMG(No.8601219,8601242)。
文摘It is common to observe the epidemic risk perception(ERP)and a decline in subjective well-being(SWB)in the context of public health events,such as Corona Virus Disease 2019(COVID-19).However,there have been few studies exploring the impact of individuals’ERP within living space on their SWB,especially from a geographical and daily activity perspective after the resumption of work and other activities following a wave of the pandemic.In this paper,we conducted a study with 789 participants in urban China,measuring their ERP within living space and examining its influence on their SWB using path analysis.The results indicated that individuals’ERP within their living space had a significant negative effect on their SWB.The density of certain types of facilities within their living space,such as bus stops,subway stations,restaurants,fast food shops,convenience shops,hospitals,and public toilets,had a significantly negative impact on their SWB,mediated by their ERP within living space.Additionally,participation in out-of-home work and other activities not only increased individuals’ERP within living space,but also strengthened its negative effect on their SWB.
基金Supported partly by NSF of China(Grant No.11801163)NSF of Hunan Province(Grant Nos.2021JJ50032,2023JJ50164 and 2023JJ50165)Degree&Postgraduate Reform Project of Hunan University of Technology and Hunan Province(Grant Nos.JGYB23009 and 2024JGYB210).
文摘We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金Science and Technology Research Program of Xiamen Customs(2020XK08).
文摘Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.