A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuate...In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems.展开更多
CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at desi...CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology.展开更多
An extensive database (946 measurements) for the frequency of pulsing flow in trickle beds was established by collecting the experimental results published over past 30 years. A new correlation based on artificial neu...An extensive database (946 measurements) for the frequency of pulsing flow in trickle beds was established by collecting the experimental results published over past 30 years. A new correlation based on artificial neural network (ANN) to predict the pulsation frequency was developed. Seven dimensionless numbers (groups) employed in the proposed correlation were liquid and gas Reynolds, liquid Weber, liquid Eotvos, gas Froude, and gas Stokes numbers and a bed correction factor. The comparisons of performance reported in the of literature and present correlations show that ANN correlation is a significant improvement in predicting pulsation frequency with an average absolute relative error (AARE) of 10% and a standard deviation less than 18%.展开更多
The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data sh...The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.展开更多
In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove vo...In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.展开更多
The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochem...The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochemical method.The velocity and concentration field in the viscous sublayer which controls the mass trans-fer in such a process was simulated by a simple wave model of single harmonics.Experimental results confirmthat the flow oscillation has no influene on time averaged mass transfer rate,but the phase difference betweenphase averaged velocity field and concentration field shifts with the frequency of imposed oscillating flow.Numeri-cal analysis reveals that the concentration boundarylayer which is responsible for the mass transfer is muchthinner than the viscous sublayer which greatly weakens the influence of imposed oscillating flow on mass transfer.展开更多
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d...This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.展开更多
A three-dimensional thermoregulation mathematical model of temperature fluctuations for the human body is developed based on predecessors' thermal models. The following improvements are necessary in real situations:...A three-dimensional thermoregulation mathematical model of temperature fluctuations for the human body is developed based on predecessors' thermal models. The following improvements are necessary in real situations: ellipsoids and elliptical cylinders are used to adequately approximate body geometry, divided into 18 segments and five layers; the core layer consists of the organs; the pulsation of the heart cycle, the pulsatile laminar flow, the peripheral resistance, and the thermal effect of food are considered. The model is calculated by adopting computational fluid dynamics(CFD) technology, and the results of the model match with the experimental data. This paper can give a reasonable explanation for the temperature fluctuations.展开更多
Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governin...Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.展开更多
A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is...A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.展开更多
Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far re...Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.展开更多
This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of...This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of the pulsating airflow around the heating pillar mounted in the rectangular enclosure was investigated experimentally while changing the size of the clearance between the enclosure wall and the pillar. The pillar simulates the components mounted in thermal equipment such as fins and electrical components. The rectangular enclosure simulates an enclosure of electronic equipment and heat exchangers. The shape of the cross section of the pillar was square having sides 30 mm. The dimension of the width of the enclosure was changed from 50 mm to 80 mm. It was found that the heat transfer performance of the pulsating airflow became higher than that of the steady flow regardless of the dimension of the clearance. The heat transfer enhancement around heating components by the pulsating flow can be available regardless of the clearance around the components.展开更多
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M631909)the Doctor of Entrepreneurship and Innovation Project of Jiangsu Province(No.JSSCBS20221300)。
文摘In this paper,we focus on the two-dimensional pulsating nanofluid flow through a parallel-plate channel in the presence of a magnetic field.The pulsating flow is produced by an applied pressure gradient that fluctuates with a small amplitude.A kind of proper transformation is used so that the governing equations describing the momentum and thermal energy are reduced to a set of non-dimensional equations.The analytical expressions of the pulsating velocity,temperature,and Nusselt number of nanofluids are obtained by the perturbation technique.In the present study,the effects of the Cu-H2O and Al_(2)O_(3)-H2O nanofluids on the flow and heat transfer in pulsating flow are compared and analyzed.The results show that the convective heat transfer effect of Cu-H2O nanofluids is better than that of Al_(2)O_(3)-H2O nanofluids.Also,the effects of the Hartmann number and pulsation amplitude on the velocity,temperature,and Nusselt number are examined and discussed in detail.The present work indicates that increasing the Hartmann number and pulsation amplitude can enhance the heat transfer of the pulsating flow.In addition,selecting an optimal pulsation frequency can maximize the convective heat transfer of the pulsating flow.Therefore,improved understanding of these fundamental mechanisms is conducive to the optimal design of thermal systems.
基金supported by National Key R&D Program of China(2020YFA0710200)the National Natural Science Foundation of China(21838010,22122814)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018064)State Key Laboratory of Multiphase complex systems,Institute of Process Engineering,Chinese Academy of Sciences(No.MPCS-2022-A-03)Innovation Academy for Green Manufacture Institute,Chinese Academy of Science(IAGM2020C14).
文摘CO_(2) electroreduction(CO_(2) ER)to high value-added chemicals is considered as a promising technology to achieve sustainable carbon neutralization.By virtue of the progressive research in recent years aiming at design and understanding of catalytic materials and electrolyte systems,the CO_(2) ER performance(such as current density,selectivity,stability,CO_(2) conversion,etc.)has been continually increased.Unfortunately,there has been relatively little attention paid to the large-scale CO 2 electrolyzers,which stand just as one obstacle,alongside series-parallel integration,challenging the practical application of this infant technology.In this review,the latest progress on the structures of low-temperature CO_(2) electrolyzers and scale-up studies was systematically overviewed.The influence of the CO_(2) electrolyzer configurations,such as the flow channel design,gas diffusion electrode(GDE)and ion exchange membrane(IEM),on the CO_(2) ER performance was further discussed.The review could provide inspiration for the design of large-scale CO_(2) electrolyzers so as to accelerate the industrial application of CO_(2) ER technology.
基金the State Key Development Program for Basic Research of China (No. G2000048005)the SINOPEC (X503023).
文摘An extensive database (946 measurements) for the frequency of pulsing flow in trickle beds was established by collecting the experimental results published over past 30 years. A new correlation based on artificial neural network (ANN) to predict the pulsation frequency was developed. Seven dimensionless numbers (groups) employed in the proposed correlation were liquid and gas Reynolds, liquid Weber, liquid Eotvos, gas Froude, and gas Stokes numbers and a bed correction factor. The comparisons of performance reported in the of literature and present correlations show that ANN correlation is a significant improvement in predicting pulsation frequency with an average absolute relative error (AARE) of 10% and a standard deviation less than 18%.
基金This research was supported by the U.S. National Science Foundation Grants ATM-8709410 and ATM-8714674.
文摘The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.
基金Projects(51779226,51476144)supported by the National Natural Science Foundation of ChinaProject(2017C31025)supported by Zhejiang Province Department Public Welfare Industrial Projects,China+1 种基金Project(2016M601736)supported by Postdoctoral Science Foundation of ChinaProject(1601028C)supported by Postdoctoral Research Funding Plan in Jiangsu Province,China
文摘In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.
文摘The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochemical method.The velocity and concentration field in the viscous sublayer which controls the mass trans-fer in such a process was simulated by a simple wave model of single harmonics.Experimental results confirmthat the flow oscillation has no influene on time averaged mass transfer rate,but the phase difference betweenphase averaged velocity field and concentration field shifts with the frequency of imposed oscillating flow.Numeri-cal analysis reveals that the concentration boundarylayer which is responsible for the mass transfer is muchthinner than the viscous sublayer which greatly weakens the influence of imposed oscillating flow on mass transfer.
基金the Ger man National Science Foundation (GR-412/33-2)Shanghai Leading Academic Discipline Project (No.B604)
文摘This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB734101)the National Natural Science Foundation of China(Grant No.51705332)
文摘A three-dimensional thermoregulation mathematical model of temperature fluctuations for the human body is developed based on predecessors' thermal models. The following improvements are necessary in real situations: ellipsoids and elliptical cylinders are used to adequately approximate body geometry, divided into 18 segments and five layers; the core layer consists of the organs; the pulsation of the heart cycle, the pulsatile laminar flow, the peripheral resistance, and the thermal effect of food are considered. The model is calculated by adopting computational fluid dynamics(CFD) technology, and the results of the model match with the experimental data. This paper can give a reasonable explanation for the temperature fluctuations.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant No.2022CXGC020405)+1 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production SystemSubject 4:Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)CNPq,CAPES and FAPERJ of Brazil。
文摘Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10747004,11065006,and 81060307
文摘A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.
基金German National Science Foundation (DFG)(No. GR-412/22)
文摘Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined.
文摘This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of the pulsating airflow around the heating pillar mounted in the rectangular enclosure was investigated experimentally while changing the size of the clearance between the enclosure wall and the pillar. The pillar simulates the components mounted in thermal equipment such as fins and electrical components. The rectangular enclosure simulates an enclosure of electronic equipment and heat exchangers. The shape of the cross section of the pillar was square having sides 30 mm. The dimension of the width of the enclosure was changed from 50 mm to 80 mm. It was found that the heat transfer performance of the pulsating airflow became higher than that of the steady flow regardless of the dimension of the clearance. The heat transfer enhancement around heating components by the pulsating flow can be available regardless of the clearance around the components.