期刊文献+
共找到217,293篇文章
< 1 2 250 >
每页显示 20 50 100
Short-circuit Analysis in Large-scale Distribution Systems With High Penetration of Distributed Generators
1
作者 Luka V.Strezoski Marija D.Prica 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期243-251,共9页
In this paper a short-circuit computation(SCC) procedure for large-scale distribution systems with high penetration of distributed generators based on contemporary technologies is proposed. The procedure is suitable f... In this paper a short-circuit computation(SCC) procedure for large-scale distribution systems with high penetration of distributed generators based on contemporary technologies is proposed. The procedure is suitable for real-time calculations.Modeling of modern distributed generators differs from the modeling of traditional synchronous and induction generators.Hence, SCC procedures found on the presumption of distribution systems with only traditional generators are not suitable in nowadays systems. In the work presented in this paper, for computation of the state of the system with short-circuit, the improved backward/forward sweep(IBFS) procedure is used.Computation results show that the IBFS procedure is much more robust than previous SCC procedures, as it takes into account all distribution system elements, including modern distributed generators. 展开更多
关键词 Distributed generation(DG) distribution system distribution management system(DMS) short-circuit computation
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
2
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases 被引量:1
3
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States PRECIPITATION low-level jet large-scale environment diurnal variation
下载PDF
Difference between grid connections of large-scale wind power and conventional synchronous generation 被引量:7
4
作者 Jie Li Chao Liu +2 位作者 Pengfei Zhang Yafeng Wang Jun Rong 《Global Energy Interconnection》 2020年第5期486-493,共8页
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel... In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms. 展开更多
关键词 large-scale wind power generation Conventional synchronous generators Grid connection scheme Power control
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
5
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
6
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
下载PDF
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
7
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 Load aggregation Regional large-scale Online recognition Feature extraction method
下载PDF
A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment
8
作者 Chenguang Ouyang Suxing Hu +6 位作者 Fengqi Long Shuai Shi Zhichao Yu Kaichun Zhao Zheng You Junyin Pi Bowen Xing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期1-10,共10页
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework... Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m. 展开更多
关键词 large-scale positioning Building vector matching Improved particle filter GPS-Denied Vector map
下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
9
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
下载PDF
A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating
10
作者 Rongrong Ren Luyang Su +2 位作者 Xinyu Meng Jianfang Wang Meng Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期429-458,共30页
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid... With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted. 展开更多
关键词 large-scale group decision making social network updating trust relationship group consensus feedback mechanism
下载PDF
Large-Scale Carbon Dioxide Storage in Salt Caverns:Evaluation of Operation,Safety,and Potential in China
11
作者 Wei Liu Xiong Zhang +8 位作者 Jifang Wan Chunhe Yang Liangliang Jiang Zhangxin Chen Maria Jose Jurado Xilin Shi Deyi Jiang Wendong Ji Qihang Li 《Engineering》 SCIE EI CAS CSCD 2024年第9期226-246,共21页
Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its... Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China. 展开更多
关键词 Carbon-neutrality Salt cavern large-scale CO_(2)storage Injection and withdrawal Stability analysis
下载PDF
Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train
12
作者 Tian Li Hao Liang +1 位作者 Zerui Xiang Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第2期463-473,共11页
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ... A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car. 展开更多
关键词 Vortex generator aerodynamic drag REDUCTION numerical simulation
下载PDF
Analysis of pseudo-random number generators in QMC-SSE method
13
作者 刘东旭 徐维 张学锋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期75-79,共5页
In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the br... In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms. 展开更多
关键词 stochastic series expansion quantum Monte Carlo pseudo-random number generator
下载PDF
Factorized Smith Method for A Class of High-Ranked Large-Scale T-Stein Equations
14
作者 LI Xiang YU Bo TANG Qiong 《Chinese Quarterly Journal of Mathematics》 2024年第3期235-249,共15页
We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi... We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time. 展开更多
关键词 large-scale T-Stein equations High-ranked Deflation and shift Partially truncation and compression Smith method
下载PDF
Solar-and/or Radiative Cooling-Driven Thermoelectric Generators:A Critical Review
15
作者 Jinglong Wang Lin Lu Kai Jiao 《Energy Engineering》 EI 2024年第10期2681-2718,共38页
Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs of... Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future. 展开更多
关键词 Thermoelectric generators solar energy radiative sky cooling applications
下载PDF
Large-scale spatial data visualization method based on augmented reality
16
作者 Xiaoning QIAO Wenming XIE +4 位作者 Xiaodong PENG Guangyun LI Dalin LI Yingyi GUO Jingyi REN 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期132-147,共16页
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese... Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules. 展开更多
关键词 large-scale spatial data analysis Visual analysis technology Augmented reality 3D reconstruction Space environment
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
17
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) large-scale model Self-supervised learning Deep neural network
下载PDF
Numerical and theoretical study of large-scale failure of strata overlying sublevel caving mines with steeply dipping discontinuities
18
作者 Kaizong Xia Zhiwei Si +3 位作者 Congxin Chen Xiaoshuang Li Junpeng Zou Jiahao Yuan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1799-1815,共17页
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of... The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf. 展开更多
关键词 sublevel caving mines universal distinct element code(UDEC)numerical approach large-scale ground movement steeply dipping superimposed cantilever beam toppling failure
下载PDF
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
19
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
下载PDF
Recovery of Solid Oxide Fuel CellWaste Heat by Thermoelectric Generators and AlkaliMetal Thermoelectric Converters
20
作者 Wenxia Zhu Baishu Chen +1 位作者 Lexin Wang Chunxiang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1559-1573,共15页
A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide ... A Solid Oxide Fuel Cell(SOFC)is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism.The electrochemical reaction of a solid oxide fuel cell(SOFC)generates heat,and this heat can be recovered and put to use in a waste heat recovery system.In addition to preheating the fuel and oxidant,producing steam for industrial use,and heating and cooling enclosed rooms,this waste heat can be used for many more productive uses.The large waste heat produced by SOFCs is a worry that must be managed if they are to be adopted as a viable option in the power generation business.In light of these findings,a novel approach to SOFC waste heat recovery is proposed.The SOFC is combined with a“Thermoelectric Generator and an Alkali Metal Thermoelectric Converter(TG-AMTC)”to transform the excess heat generated by both the SOFC and the TG-AMTC.The proposed TG-AMTC is evaluated using a number of performance indicators including power density,operating temperature,heat recovery rate,exergetic efficiency,energy efficiency,and recovery time.The experimental results state that TG-AMTC has provided an exergetic efficiency,energetic efficiency,and recovery time of 97%,98%,and 23%,respectively.The study proves that the proposed TG-AMTC for SOFC is an efficient method of recovering waste heat. 展开更多
关键词 Alkali metal thermoelectric converters waste heat thermoelectric generators solid oxide fuel cell
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部