期刊文献+
共找到2,086篇文章
< 1 2 105 >
每页显示 20 50 100
Large-scale spatial data visualization method based on augmented reality
1
作者 Xiaoning QIAO Wenming XIE +4 位作者 Xiaodong PENG Guangyun LI Dalin LI Yingyi GUO Jingyi REN 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期132-147,共16页
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese... Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules. 展开更多
关键词 large-scale spatial data analysis Visual analysis technology Augmented reality 3D reconstruction Space environment
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
2
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Big Data Analytics Using Graph Signal Processing
3
作者 Farhan Amin Omar M.Barukab Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2023年第1期489-502,共14页
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ... The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics. 展开更多
关键词 Big data data science big data processing graph signal processing social networks
下载PDF
Galaxy Interactions in Filaments and Sheets:Effects of the Large-scale Structures Versus the Local Density
4
作者 Apashanka Das Biswajit Pandey Suman Sarkar 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第2期197-204,共8页
Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments ... Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment. 展开更多
关键词 methods statistical-methods data analysis-galaxies evolution-galaxies interactions-(cosmology:)large-scale structure of universe
下载PDF
A Secure Microgrid Data Storage Strategy with Directed Acyclic Graph Consensus Mechanism
5
作者 Jian Shang Runmin Guan Wei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2609-2626,共18页
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ... The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks. 展开更多
关键词 MICROGRID data security storage node trust degree directed acyclic graph data structure consensus mechanism secure multi-party computing blockchain
下载PDF
A Bitcoin Address Multi-Classification Mechanism Based on Bipartite Graph-Based Maximization Consensus
6
作者 Lejun Zhang Junjie Zhang +4 位作者 Kentaroh Toyoda Yuan Liu Jing Qiu Zhihong Tian Ran Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期783-800,共18页
Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services ope... Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,gambling,marketplaces,and also scams such as high-yield investment projects.Identifying the services operated by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin in a small way.In this paper,we address the problem of identifying multiple classes of Bitcoin services,and for the poor classification of individual addresses that do not have significant features,we propose a Bitcoin address identification scheme based on joint multi-model prediction using the mapping relationship between addresses and entities.The innovation of the method is to(1)Extract as many valuable features as possible when an address is given to facilitate the multi-class service identification task.(2)Unlike the general supervised model approach,this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.Specifically,after obtaining the overall features,the address classification and entity clustering tasks are performed separately,and the results are subjected to graph-basedmaximization consensus.The final result ismade to baseline the individual address classification results while satisfying the constraint of having similarly behaving entities as far as possible.By testing and evaluating over 26,000 Bitcoin addresses,our feature extraction method captures more useful features.In addition,the combined multi-learner model obtained results that exceeded the baseline classifier reaching an accuracy of 77.4%. 展开更多
关键词 Bitcoin multi-service classification graph maximization consensus data security
下载PDF
An Intelligent Quality Control Method for Manufacturing Processes Based on a Human–Cyber–Physical Knowledge Graph
7
作者 Shilong Wang Jinhan Yang +2 位作者 Bo Yang Dong Li Ling Kang 《Engineering》 SCIE EI CAS CSCD 2024年第10期242-260,共19页
Quality management is a constant and significant concern in enterprises.Effective determination of correct solutions for comprehensive problems helps avoid increased backtesting costs.This study proposes an intelligen... Quality management is a constant and significant concern in enterprises.Effective determination of correct solutions for comprehensive problems helps avoid increased backtesting costs.This study proposes an intelligent quality control method for manufacturing processes based on a human–cyber–physical(HCP)knowledge graph,which is a systematic method that encompasses the following elements:data management and classification based on HCP ternary data,HCP ontology construction,knowledge extraction for constructing an HCP knowledge graph,and comprehensive application of quality control based on HCP knowledge.The proposed method implements case retrieval,automatic analysis,and assisted decision making based on an HCP knowledge graph,enabling quality monitoring,inspection,diagnosis,and maintenance strategies for quality control.In practical applications,the proposed modular and hierarchical HCP ontology exhibits significant superiority in terms of shareability and reusability of the acquired knowledge.Moreover,the HCP knowledge graph deeply integrates the provided HCP data and effectively supports comprehensive decision making.The proposed method was implemented in cases involving an automotive production line and a gear manufacturing process,and the effectiveness of the method was verified by the application system deployed.Furthermore,the proposed method can be extended to other manufacturing process quality control tasks. 展开更多
关键词 Quality control Human-cyber-physical ternary data Knowledge graph
下载PDF
Regularized focusing inversion for large-scale gravity data based on GPU parallel computing
8
作者 WANG Haoran DING Yidan +1 位作者 LI Feida LI Jing 《Global Geology》 2019年第3期179-187,共9页
Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes... Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes the application of GPU parallel processing technology to the focusing inversion method, aiming at improving the inversion accuracy while speeding up calculation and reducing the memory consumption, thus obtaining the fast and reliable inversion results for large complex model. In this paper, equivalent storage of geometric trellis is used to calculate the sensitivity matrix, and the inversion is based on GPU parallel computing technology. The parallel computing program that is optimized by reducing data transfer, access restrictions and instruction restrictions as well as latency hiding greatly reduces the memory usage, speeds up the calculation, and makes the fast inversion of large models possible. By comparing and analyzing the computing speed of traditional single thread CPU method and CUDA-based GPU parallel technology, the excellent acceleration performance of GPU parallel computing is verified, which provides ideas for practical application of some theoretical inversion methods restricted by computing speed and computer memory. The model test verifies that the focusing inversion method can overcome the problem of severe skin effect and ambiguity of geological body boundary. Moreover, the increase of the model cells and inversion data can more clearly depict the boundary position of the abnormal body and delineate its specific shape. 展开更多
关键词 large-scale gravity data GPU parallel computing CUDA equivalent geometric TRELLIS FOCUSING INVERSION
下载PDF
Trend Analysis of Large-Scale Twitter Data Based on Witnesses during a Hazardous Event: A Case Study on California Wildfire Evacuation
9
作者 Syed A. Morshed Khandakar Mamun Ahmed +1 位作者 Kamar Amine Kazi Ashraf Moinuddin 《World Journal of Engineering and Technology》 2021年第2期229-239,共11页
Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effectiv... Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effective and innovative digital platform to observe trend from social media users’ perspective who are direct or indirect witnesses of the calamitous event. This paper aims to collect and analyze twitter data related to the recent wildfire in California to perform a trend analysis by classifying firsthand and credible information from Twitter users. This work investigates tweets on the recent wildfire in California and classifies them based on witnesses into two types: 1) direct witnesses and 2) indirect witnesses. The collected and analyzed information can be useful for law enforcement agencies and humanitarian organizations for communication and verification of the situational awareness during wildfire hazards. Trend analysis is an aggregated approach that includes sentimental analysis and topic modeling performed through domain-expert manual annotation and machine learning. Trend analysis ultimately builds a fine-grained analysis to assess evacuation routes and provide valuable information to the firsthand emergency responders<span style="font-family:Verdana;">.</span> 展开更多
关键词 WILDFIRE EVACUATION TWITTER large-scale data Topic Model Sentimental Analysis Trend Analysis
下载PDF
Semi-supervised Affinity Propagation Clustering Based on Subtractive Clustering for Large-Scale Data Sets
10
作者 Qi Zhu Huifu Zhang Quanqin Yang 《国际计算机前沿大会会议论文集》 2015年第1期76-77,共2页
In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore,... In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed. 展开更多
关键词 subtractive CLUSTERING INITIAL cluster AFFINITY propagation CLUSTERING SEMI-SUPERVISED CLUSTERING large-scale data SETS
下载PDF
Graph Regularized L_p Smooth Non-negative Matrix Factorization for Data Representation 被引量:10
11
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Irene Cheng Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第2期584-595,共12页
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ... This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods. 展开更多
关键词 data clustering dimensionality reduction graph REGULARIZATION LP SMOOTH non-negative matrix factorization(SNMF)
下载PDF
基于多特征融合的GraphHeat-ChebNet隧道形变预测模型
12
作者 熊安萍 李梦凡 龙林波 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第1期164-175,共12页
对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图... 对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图卷积网络(graph convolution net,GCN)分别提取特征信号的低频和高频部分,并获取形变特征的空间关联性,ConvGRUs网络用于提取特征在时间上的关联性,通过三阶段融合方法保留挖掘的信息。为了解决实验数据在时间维度上不充足的问题,引入双层滑动窗口机制。此外,所提模型与其他模型或算法在不同数据集上实验比较,衡量一天和两天预测值的误差指标优于其他模型,而且对大部分节点预测的误差较低。说明模型受样本节点数影响较小,能较好地预测一天和两天的形变,模型学习特征与时空模式的能力较强,泛化性较好。 展开更多
关键词 隧道形变 预测模型 融合时空数据 滑动窗口 图卷积网络(GCN)
下载PDF
Forestry big data platform by Knowledge Graph 被引量:4
13
作者 Mengxi Zhao Dan Li Yongshen Long 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第3期1305-1314,共10页
Using the advantages of web crawlers in data collection and distributed storage technologies,we accessed to a wealth of forestry-related data.Combined with the mature big data technology at its present stage,Hadoop... Using the advantages of web crawlers in data collection and distributed storage technologies,we accessed to a wealth of forestry-related data.Combined with the mature big data technology at its present stage,Hadoop's distributed system was selected to solve the storage problem of massive forestry big data and the memory-based Spark computing framework to realize real-time and fast processing of data.The forestry data contains a wealth of information,and mining this information is of great significance for guiding the development of forestry.We conducts co-word and cluster analyses on the keywords of forestry data,extracts the rules hidden in the data,analyzes the research hotspots more accurately,grasps the evolution trend of subject topics,and plays an important role in promoting the research and development of subject areas.The co-word analysis and clustering algorithm have important practical significance for the topic structure,research hotspot or development trend in the field of forestry research.Distributed storage framework and parallel computing have greatly improved the performance of data mining algorithms.Therefore,the forestry big data mining system by big data technology has important practical significance for promoting the development of intelligent forestry. 展开更多
关键词 Intelligent forestry Co-word analysis Knowledge graph Big data
下载PDF
Constructing Three-Dimension Space Graph for Outlier Detection Algorithms in Data Mining 被引量:1
14
作者 ZHANG Jing 1,2 , SUN Zhi-hui 1 1.Department of Computer Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China 2.Department of Electricity and Information Engineering, Jiangsu University, Zhenjiang 212001, Jiangsu, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期585-589,共5页
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp... Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery. 展开更多
关键词 OUTLIER DETECTION three-dimensional space graph data mining
下载PDF
Brief Talk About Big Data Graph Analysis and Visualization 被引量:3
15
作者 Guang Su Fenghua Li Wangdong Jiang 《Journal on Big Data》 2019年第1期25-38,共14页
Graphical methods are used for construction.Data analysis and visualization are an important area of applications of big data.At the same time,visual analysis is also an important method for big data analysis.Data vis... Graphical methods are used for construction.Data analysis and visualization are an important area of applications of big data.At the same time,visual analysis is also an important method for big data analysis.Data visualization refers to data that is presented in a visual form,such as a chart or map,to help people understand the meaning of the data.Data visualization helps people extract meaning from data quickly and easily.Visualization can be used to fully demonstrate the patterns,trends,and dependencies of your data,which can be found in other displays.Big data visualization analysis combines the advantages of computers,which can be static or interactive,interactive analysis methods and interactive technologies,which can directly help people and effectively understand the information behind big data.It is indispensable in the era of big data visualization,and it can be very intuitive if used properly.Graphical analysis also found that valuable information becomes a powerful tool in complex data relationships,and it represents a significant business opportunity.With the rise of big data,important technologies suitable for dealing with complex relationships have emerged.Graphics come in a variety of shapes and sizes for a variety of business problems.Graphic analysis is first in the visualization.The step is to get the right data and answer the goal.In short,to choose the right method,you must understand each relative strengths and weaknesses and understand the data.Key steps to get data:target;collect;clean;connect. 展开更多
关键词 BIG data VISUALIZATION INFORMATION VISUALIZATION graph analysis
下载PDF
Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks 被引量:1
16
作者 Huan-feng DUAN Guo-ping YU 《Water Science and Engineering》 EI CAS 2010年第1期23-35,共13页
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by... With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods. 展开更多
关键词 large-scale networks hydraulic simulation graph theory fundamental loop spanning tree EFFICIENCY
下载PDF
Which is better for presenting your data: table or graph? 被引量:1
17
作者 张莉 傅小兰 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1165-1168,共4页
This study aimed at investigating the characteristics of table and graph that people perceive and the data types which people consider the two displays are most appropriate for. Participants in this survey were 195 te... This study aimed at investigating the characteristics of table and graph that people perceive and the data types which people consider the two displays are most appropriate for. Participants in this survey were 195 teachers and undergraduates from four universities in Beijing. The results showed people's different attitudes towards the two forms of display. 展开更多
关键词 TABLE graph data types Subjective evaluation
下载PDF
A Novel Method for Resolving and Completing Authors' Country Affiliation Data in Bibliographic Records 被引量:1
18
作者 Ba Xuan Nguyen Jesse David Dinneen Markus Luczak-Roesch 《Journal of Data and Information Science》 CSCD 2020年第3期97-115,共19页
Purpose: Our work seeks to overcome data quality issues related to incomplete author affiliation data in bibliographic records in order to support accurate and reliable measurement of international research collaborat... Purpose: Our work seeks to overcome data quality issues related to incomplete author affiliation data in bibliographic records in order to support accurate and reliable measurement of international research collaboration(IRC).Design/methodology/approch: We propose, implement, and evaluate a method that leverages the Web-based knowledge graph Wikidata to resolve publication affiliation data to particular countries. The method is tested with general and domain-specific data sets.Findings: Our evaluation covers the magnitude of improvement, accuracy, and consistency. Results suggest the method is beneficial, reliable, and consistent, and thus a viable and improved approach to measuring IRC.Research limitations: Though our evaluation suggests the method works with both general and domain-specific bibliographic data sets, it may perform differently with data sets not tested here. Further limitations stem from the use of the R programming language and R libraries for country identification as well as imbalanced data coverage and quality in Wikidata that may also change over time.Practical implications: The new method helps to increase the accuracy in IRC studies and provides a basis for further development into a general tool that enriches bibliographic data using the Wikidata knowledge graph.Originality: This is the first attempt to enrich bibliographic data using a peer-produced, Webbased knowledge graph like Wikidata. 展开更多
关键词 International research collaboration measurement Bibliographic data Country identification Knowledge graphs Wikidata Open data
下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
19
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
下载PDF
A Graph Drawing Algorithm for Visualizing Multivariate Categorical Data
20
作者 HUANG Jingwei HUANG Jie 《Wuhan University Journal of Natural Sciences》 CAS 2007年第2期239-242,共4页
In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify pat... In this paper, a new approach for visualizing multivariate categorical data is presented. The approach uses a graph to represent multivariate categorical data and draws the graph in such a way that we can identify patterns, trends and relationship within the data. A mathematical model for the graph layout problem is deduced and a spectral graph drawing algorithm for visualizing multivariate categorical data is proposed. The experiments show that the drawings by the algorithm well capture the structures of multivariate categorical data and the computing speed is fast. 展开更多
关键词 multivariate categorical data graph graph drawing ALGORITHMS
下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部