The hydraulic excitation acting on a hydro-turbine generator unit exhibits obvious non-stationary characteristics.In order to account for these characteristics,this study focuses on the non-stationary random vibration...The hydraulic excitation acting on a hydro-turbine generator unit exhibits obvious non-stationary characteristics.In order to account for these characteristics,this study focuses on the non-stationary random vibration reliability of the hydro-turbine generator unit.Firstly,the non-stationary characteristics of the hydraulic excitation are analyzed,and a mathematical ex-pression is constructed using the virtual excitation method.Secondly,a dynamic model of the unit is established to demonstrate the non-stationary random vibration characteristics under hydraulic excitation.Thirdly,an active learning non-stationary vibration reliability analysis method AK-MCS-T-H is proposed combining the Kriging model,the Monte Carlo simulation(MCS)method,and the information entropy learning function H.This method reveals the influence of the non-stationary hydraulic excitation on the random vibration reliability of the hydro-turbine generator unit.Finally,an example is presented to analyze the random vibration reliability.The study shows that the AK-MCS-T-H proposed in this paper can solve the problem of non-stationary random vibration reliability of the Francis hydro-turbine generator unit more effectively.展开更多
The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized,and the parameters...The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized,and the parameters of hydro-turbine generating units are optimized through the study on key technical problems.The unit operation indicates that the performance of the hydro-turbine generating units is excellent,and the units can operate in a safe,stable and highly efficient mode for a long term.Therefore,it is verified effectively that the general technical design of units is scientific and rational.展开更多
Baosteel's 60000 m^3/h air separation unit (ASU) is the largest oxygen generating system in China. The operational cost of such a giant system is very high. How to reduce the operational cost is a critical issue. T...Baosteel's 60000 m^3/h air separation unit (ASU) is the largest oxygen generating system in China. The operational cost of such a giant system is very high. How to reduce the operational cost is a critical issue. This paper discusses the system's characteristics,the current operational status and the difficulties in reducing the cost,and analyzes relevant indicators, such as the technical and economical indicators of individual units and systems as well as the indicators concerning the costs. The relationship between the cost and each economical indicator and measures to optimize an economical operation of the oxygen generating system are also discussed in this paper.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51465001 and 51905113)the Natural Science Foundation of Changsha City(Grant No.kq2208085)。
文摘The hydraulic excitation acting on a hydro-turbine generator unit exhibits obvious non-stationary characteristics.In order to account for these characteristics,this study focuses on the non-stationary random vibration reliability of the hydro-turbine generator unit.Firstly,the non-stationary characteristics of the hydraulic excitation are analyzed,and a mathematical ex-pression is constructed using the virtual excitation method.Secondly,a dynamic model of the unit is established to demonstrate the non-stationary random vibration characteristics under hydraulic excitation.Thirdly,an active learning non-stationary vibration reliability analysis method AK-MCS-T-H is proposed combining the Kriging model,the Monte Carlo simulation(MCS)method,and the information entropy learning function H.This method reveals the influence of the non-stationary hydraulic excitation on the random vibration reliability of the hydro-turbine generator unit.Finally,an example is presented to analyze the random vibration reliability.The study shows that the AK-MCS-T-H proposed in this paper can solve the problem of non-stationary random vibration reliability of the Francis hydro-turbine generator unit more effectively.
文摘The main technical problems that should be considered in the design of hydro-turbine generating units of Three Gorges Project (TGP) are analyzed;the key technical researches performed are summarized,and the parameters of hydro-turbine generating units are optimized through the study on key technical problems.The unit operation indicates that the performance of the hydro-turbine generating units is excellent,and the units can operate in a safe,stable and highly efficient mode for a long term.Therefore,it is verified effectively that the general technical design of units is scientific and rational.
文摘Baosteel's 60000 m^3/h air separation unit (ASU) is the largest oxygen generating system in China. The operational cost of such a giant system is very high. How to reduce the operational cost is a critical issue. This paper discusses the system's characteristics,the current operational status and the difficulties in reducing the cost,and analyzes relevant indicators, such as the technical and economical indicators of individual units and systems as well as the indicators concerning the costs. The relationship between the cost and each economical indicator and measures to optimize an economical operation of the oxygen generating system are also discussed in this paper.