For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most ...For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most existing studies on this subject mainly concentrate on monoplex networks considering a single type of relation among nodes.However,numerous real-world networks are naturally composed of multiple layers with different relation types;such a network is called a multiplex network.The majority of existing multiplex network embedding methods either overlook node attributes,resort to node labels for training,or underutilize underlying information shared across multiple layers.In this paper,we propose Multiplex Network Infomax(MNI),an unsupervised embedding framework to represent information of multiple layers into a unified embedding space.To be more specific,we aim to maximize the mutual information between the unified embedding and node embeddings of each layer.On the basis of this framework,we present an unsupervised network embedding method for attributed multiplex networks.Experimental results show that our method achieves competitive performance on not only node-related tasks,such as node classification,clustering,and similarity search,but also a typical edge-related task,i.e.,link prediction,at times even outperforming relevant supervised methods,despite that MNI is fully unsupervised.展开更多
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris...Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.展开更多
We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands he...We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands hectares coverage, years of time monitoring and the adverse environment. The system architecture, the agriculture sensor device, the mesh protocol, and the web-based information processing platform are introduced. We also presented some implementation experience. The mesh protocol (LayerMesh) is highlighted, in which “stair scheduling” and “distributed dynamic load-balancing” are proposed to response the scalability, longevity and adaptivity requirements. We believe the design of L3SN is useful to many other large-scale, longevous applications such as hydrologic monitoring, geological monitoring etc.展开更多
Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the stru...Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE.展开更多
With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose...With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose the “movement purpose hypothesis” that each movement occurs from two causes: where the person is and what the person wants to do at a given moment. We formulate this hypothesis to a synthesis model in which two network graphs generate a movement network graph. Then we develop two novel-embedding models to assess the hypothesis, and demonstrate that the models obtain a vector representation of a geospatial area using movement patterns of people from large-scale smart card data. We conducted an experiment using smart card data for a large network of railroads in the Kansai region of Japan. We obtained a vector representation of each railroad station and each purpose using the developed embedding models. Results show that network embedding methods are suitable for a large-scale movement of data, and the developed models perform better than existing embedding methods in the task of multi-label classification for train stations on the purpose of use data set. Our proposed models can contribute to the prediction of people flows by discovering underlying representations of geospatial areas from mobility data.展开更多
Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,p...Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification.展开更多
异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-...异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-N推荐的多嵌入融合推荐(Multi-embedding Fusion Recommendation, MFRec)模型。首先,该模型在用户和项目学习分支中都采用对象上下文表示网络,充分利用上下文信息以放大局部特征,增强相邻节点的交互性;其次,将空洞卷积和空间金字塔池化引入元路径学习分支,以便获取多尺度信息并增强元路径的节点表示;然后,采用多嵌入融合模块以便更好地进行用户、项目以及元路径的嵌入融合,细粒度地进行多嵌入之间的交互学习,并强调了各特征的不同重要性程度;最后,在两个公共推荐系统数据集上进行了实验,结果表明所提模型MFRec优于现有的其他top-N推荐系统模型。展开更多
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth...A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.展开更多
Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in ...Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in the content data.In order to solve this issue,in this paper,we present a community discovery method based on heterogeneous information network decomposition and embedding.Unlike traditional methods,our method takes into account topology,node content and edge content,which can supply abundant evidence for community discovery.First,an embedding-based similarity evaluation method is proposed,which decomposes the heterogeneous information network into several subnetworks,and extracts their potential deep representation to evaluate the similarities between nodes.Second,a bottom-up community discovery algorithm is proposed.Via leader nodes selection,initial community generation,and community expansion,communities can be found more efficiently.Third,some incremental maintenance strategies for the changes of networks are proposed.We conduct experimental studies based on three real-world social networks.Experiments demonstrate the effectiveness and the efficiency of our proposed method.Compared with the traditional methods,our method improves normalized mutual information(NMI)and the modularity by an average of 12%and 37%respectively.展开更多
Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate w...Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods.展开更多
Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods ...Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods for drug-target interaction(DTI)identification remain either time consuming or heavily dependent on domain expertise.Therefore,various computational models have been proposed to predict possible interactions between drugs and target proteins.However,most prediction methods do not consider the topological structures characteristics of the relationship.In this paper,we propose a relational topologybased heterogeneous network embedding method to predict drug-target interactions,abbreviated as RTHNE_DTI.We first construct a heterogeneous information network based on the interaction between different types of nodes,to enhance the ability of association discovery by fully considering the topology of the network.Then drug and target protein nodes can be represented by the other types of nodes.According to the different topological structure of the relationship between the nodes,we divide the relationship in the heterogeneous network into two categories and model them separately.Extensive experiments on the realworld drug datasets,RTHNE_DTI produces high efficiency and outperforms other state-of-the-art methods.RTHNE_DTI can be further used to predict the interaction between unknown interaction drug-target pairs.展开更多
Sensor network has experienced world-wide explosive interests in recent years. It combines the technology of modern microelectronic sensors, embedded computational processing systems, and modern computer and wireless ...Sensor network has experienced world-wide explosive interests in recent years. It combines the technology of modern microelectronic sensors, embedded computational processing systems, and modern computer and wireless networking methodologies. In this overview paper, we first provide some rationales for the growth of sensor networking. Then we discuss various basic concepts and hardware issues. Four basic application cases in the US. National Science Foundation funded Ceneter for Embedded Networked Sensing program at UCLA are presented. Finally, six challenging issues in sensor networks are discussed. Numerous references including relevant papers, books, and conferences that have appeared in recent years are given.展开更多
Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However a...Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.展开更多
The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retriev...The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retrieval etc.Word embedding has been applied by many researchers for Information retrieval tasks.In this paper word embedding-based skip-gram model has been developed for the query expansion task.Vocabulary terms are obtained from the top“k”initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query.The performance of the model based on mean average precision is 0.3176.The proposed model compares with other existing models.An improvement of 6.61%,6.93%,and 9.07%on MAP value is observed compare to the Original query,BM25 model,and query expansion with the Chi-Square model respectively.The proposed model also retrieves 84,25,and 81 additional relevant documents compare to the original query,query expansion with Chi-Square model,and BM25 model respectively and thus improves the recall value also.The per query analysis reveals that the proposed model performs well in 30,36,and 30 queries compare to the original query,query expansion with Chi-square model,and BM25 model respectively.展开更多
基金This work was supported by the National Natural Science Foundation of China(NSFC)under Grant U19B2004in part by National Key R&D Program of China under Grant 2022YFB2901202+1 种基金in part by the Open Funding Projects of the State Key Laboratory of Communication Content Cognition(No.20K05 and No.A02107)in part by the Special Fund for Science and Technology of Guangdong Province under Grant 2019SDR002.
文摘For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most existing studies on this subject mainly concentrate on monoplex networks considering a single type of relation among nodes.However,numerous real-world networks are naturally composed of multiple layers with different relation types;such a network is called a multiplex network.The majority of existing multiplex network embedding methods either overlook node attributes,resort to node labels for training,or underutilize underlying information shared across multiple layers.In this paper,we propose Multiplex Network Infomax(MNI),an unsupervised embedding framework to represent information of multiple layers into a unified embedding space.To be more specific,we aim to maximize the mutual information between the unified embedding and node embeddings of each layer.On the basis of this framework,we present an unsupervised network embedding method for attributed multiplex networks.Experimental results show that our method achieves competitive performance on not only node-related tasks,such as node classification,clustering,and similarity search,but also a typical edge-related task,i.e.,link prediction,at times even outperforming relevant supervised methods,despite that MNI is fully unsupervised.
基金supported in part by the National Natural Science Foundation of China under Grant No.61471055
文摘Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.
文摘We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands hectares coverage, years of time monitoring and the adverse environment. The system architecture, the agriculture sensor device, the mesh protocol, and the web-based information processing platform are introduced. We also presented some implementation experience. The mesh protocol (LayerMesh) is highlighted, in which “stair scheduling” and “distributed dynamic load-balancing” are proposed to response the scalability, longevity and adaptivity requirements. We believe the design of L3SN is useful to many other large-scale, longevous applications such as hydrologic monitoring, geological monitoring etc.
基金supported by the National Key Research and Development Plan of China(2017YFB0503700,2016YFB0501801)the National Natural Science Foundation of China(61170026,62173157)+1 种基金the Thirteen Five-Year Research Planning Project of National Language Committee(No.YB135-149)the Fundamental Research Funds for the Central Universities(Nos.CCNU20QN022,CCNU20QN021,CCNU20ZT012).
文摘Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE.
文摘With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose the “movement purpose hypothesis” that each movement occurs from two causes: where the person is and what the person wants to do at a given moment. We formulate this hypothesis to a synthesis model in which two network graphs generate a movement network graph. Then we develop two novel-embedding models to assess the hypothesis, and demonstrate that the models obtain a vector representation of a geospatial area using movement patterns of people from large-scale smart card data. We conducted an experiment using smart card data for a large network of railroads in the Kansai region of Japan. We obtained a vector representation of each railroad station and each purpose using the developed embedding models. Results show that network embedding methods are suitable for a large-scale movement of data, and the developed models perform better than existing embedding methods in the task of multi-label classification for train stations on the purpose of use data set. Our proposed models can contribute to the prediction of people flows by discovering underlying representations of geospatial areas from mobility data.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.3418].
文摘Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification.
基金Science and Technology Research Project of Jiangxi Provincial Department of Education(Project No.GJJ211348,GJJ211347 and GJJ2201056)。
文摘A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.
基金The work was supported by the National Key Research and Development Program of China under Grant No.2018YFB1003404the National Natural Science Foundation of China under Grant Nos.61672142,U1435216 and 61602103.
文摘Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in the content data.In order to solve this issue,in this paper,we present a community discovery method based on heterogeneous information network decomposition and embedding.Unlike traditional methods,our method takes into account topology,node content and edge content,which can supply abundant evidence for community discovery.First,an embedding-based similarity evaluation method is proposed,which decomposes the heterogeneous information network into several subnetworks,and extracts their potential deep representation to evaluate the similarities between nodes.Second,a bottom-up community discovery algorithm is proposed.Via leader nodes selection,initial community generation,and community expansion,communities can be found more efficiently.Third,some incremental maintenance strategies for the changes of networks are proposed.We conduct experimental studies based on three real-world social networks.Experiments demonstrate the effectiveness and the efficiency of our proposed method.Compared with the traditional methods,our method improves normalized mutual information(NMI)and the modularity by an average of 12%and 37%respectively.
基金Dr.Arshiya Sajid Ansari would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2023-910.
文摘Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods.
基金funded by the National Natural Science Foundation of China,grant number 61402220the key program of Scientific Research Fund of Hunan Provincial Education Department,grant number 19A439the Project supported by the Natural Science Foundation of Hunan Province,China,grant number 2020J4525 and grant number 2022J30495.
文摘Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods for drug-target interaction(DTI)identification remain either time consuming or heavily dependent on domain expertise.Therefore,various computational models have been proposed to predict possible interactions between drugs and target proteins.However,most prediction methods do not consider the topological structures characteristics of the relationship.In this paper,we propose a relational topologybased heterogeneous network embedding method to predict drug-target interactions,abbreviated as RTHNE_DTI.We first construct a heterogeneous information network based on the interaction between different types of nodes,to enhance the ability of association discovery by fully considering the topology of the network.Then drug and target protein nodes can be represented by the other types of nodes.According to the different topological structure of the relationship between the nodes,we divide the relationship in the heterogeneous network into two categories and model them separately.Extensive experiments on the realworld drug datasets,RTHNE_DTI produces high efficiency and outperforms other state-of-the-art methods.RTHNE_DTI can be further used to predict the interaction between unknown interaction drug-target pairs.
基金Supported by the US National Science Foundation, Center for Embedded Networked Sensing (EF-0410438) ARO-Multidisciplinary University Research Initiative/Penn State University (50126) in the USA
文摘Sensor network has experienced world-wide explosive interests in recent years. It combines the technology of modern microelectronic sensors, embedded computational processing systems, and modern computer and wireless networking methodologies. In this overview paper, we first provide some rationales for the growth of sensor networking. Then we discuss various basic concepts and hardware issues. Four basic application cases in the US. National Science Foundation funded Ceneter for Embedded Networked Sensing program at UCLA are presented. Finally, six challenging issues in sensor networks are discussed. Numerous references including relevant papers, books, and conferences that have appeared in recent years are given.
基金supported by National Key Basic Research Program of China (973 program) under Grant No.2007CB310703Funds for Creative Research Groups of China under Grant No.60821001+1 种基金National Natural Science Foundation of China under Grant No. 60973108National S&T Major Project under Grant No.2011ZX03005-004-02
文摘Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.
文摘The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retrieval etc.Word embedding has been applied by many researchers for Information retrieval tasks.In this paper word embedding-based skip-gram model has been developed for the query expansion task.Vocabulary terms are obtained from the top“k”initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query.The performance of the model based on mean average precision is 0.3176.The proposed model compares with other existing models.An improvement of 6.61%,6.93%,and 9.07%on MAP value is observed compare to the Original query,BM25 model,and query expansion with the Chi-Square model respectively.The proposed model also retrieves 84,25,and 81 additional relevant documents compare to the original query,query expansion with Chi-Square model,and BM25 model respectively and thus improves the recall value also.The per query analysis reveals that the proposed model performs well in 30,36,and 30 queries compare to the original query,query expansion with Chi-square model,and BM25 model respectively.