期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Multiplex network infomax:Multiplex network embedding via information fusion
1
作者 Qiang Wang Hao Jiang +3 位作者 Ying Jiang Shuwen Yi Qi Nie Geng Zhang 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1157-1168,共12页
For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most ... For networking of big data applications,an essential issue is how to represent networks in vector space for further mining and analysis tasks,e.g.,node classification,clustering,link prediction,and visualization.Most existing studies on this subject mainly concentrate on monoplex networks considering a single type of relation among nodes.However,numerous real-world networks are naturally composed of multiple layers with different relation types;such a network is called a multiplex network.The majority of existing multiplex network embedding methods either overlook node attributes,resort to node labels for training,or underutilize underlying information shared across multiple layers.In this paper,we propose Multiplex Network Infomax(MNI),an unsupervised embedding framework to represent information of multiple layers into a unified embedding space.To be more specific,we aim to maximize the mutual information between the unified embedding and node embeddings of each layer.On the basis of this framework,we present an unsupervised network embedding method for attributed multiplex networks.Experimental results show that our method achieves competitive performance on not only node-related tasks,such as node classification,clustering,and similarity search,but also a typical edge-related task,i.e.,link prediction,at times even outperforming relevant supervised methods,despite that MNI is fully unsupervised. 展开更多
关键词 network embedding Multiplex network Mutual information maximization
下载PDF
Robust Virtual Network Embedding Based on Component Connectivity in Large-Scale Network 被引量:4
2
作者 Xiaojuan Wang Mei Song +1 位作者 Deyu Yuan Xiangru Liu 《China Communications》 SCIE CSCD 2017年第10期164-179,共16页
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris... Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics. 展开更多
关键词 large-scale network component connectivity virtual network embedding SDN
下载PDF
L3SN: A Level-Based, Large-Scale, Longevous Sensor Network System for Agriculture Information Monitoring
3
作者 Yongcai Wang Yuexuan Wang +3 位作者 Xiao Qi Liwen Xu Jinbiao Chen Guanyu Wang 《Wireless Sensor Network》 2010年第9期655-660,共6页
We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands he... We developed L3SN, a scalable, longevous, adaptive, and internet accessible wireless sensor network system for agriculture information monitoring, which is meticulously designed to meet the requirement of thousands hectares coverage, years of time monitoring and the adverse environment. The system architecture, the agriculture sensor device, the mesh protocol, and the web-based information processing platform are introduced. We also presented some implementation experience. The mesh protocol (LayerMesh) is highlighted, in which “stair scheduling” and “distributed dynamic load-balancing” are proposed to response the scalability, longevity and adaptivity requirements. We believe the design of L3SN is useful to many other large-scale, longevous applications such as hydrologic monitoring, geological monitoring etc. 展开更多
关键词 WIRELESS SENSOR network AGRICULTURE information MONITORING large-scale LONGEVITY Adaptivity
下载PDF
Heterogeneous Network Embedding: A Survey
4
作者 Sufen Zhao Rong Peng +1 位作者 Po Hu Liansheng Tan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期83-130,共48页
Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the stru... Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE. 展开更多
关键词 Heterogeneous information networks representation learning heterogeneous network embedding graph neural networks machine learning
下载PDF
Geospatial Area Embedding Based on the Movement Purpose Hypothesis Using Large-Scale Mobility Data from Smart Card
5
作者 Masanao Ochi Yuko Nakashio +2 位作者 Matthew Ruttley Junichiro Mori Ichiro Sakata 《International Journal of Communications, Network and System Sciences》 2016年第11期519-534,共17页
With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose... With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose the “movement purpose hypothesis” that each movement occurs from two causes: where the person is and what the person wants to do at a given moment. We formulate this hypothesis to a synthesis model in which two network graphs generate a movement network graph. Then we develop two novel-embedding models to assess the hypothesis, and demonstrate that the models obtain a vector representation of a geospatial area using movement patterns of people from large-scale smart card data. We conducted an experiment using smart card data for a large network of railroads in the Kansai region of Japan. We obtained a vector representation of each railroad station and each purpose using the developed embedding models. Results show that network embedding methods are suitable for a large-scale movement of data, and the developed models perform better than existing embedding methods in the task of multi-label classification for train stations on the purpose of use data set. Our proposed models can contribute to the prediction of people flows by discovering underlying representations of geospatial areas from mobility data. 展开更多
关键词 network embedding Auto Fare Collection Geographic information System Trajectory Data Mining Spatial Databases
下载PDF
Aspect-Based Sentiment Classification Using Deep Learning and Hybrid of Word Embedding and Contextual Position
6
作者 Waqas Ahmad Hikmat Ullah Khan +3 位作者 Fawaz Khaled Alarfaj Saqib Iqbal Abdullah Mohammad Alomair Naif Almusallam 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3101-3124,共24页
Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,p... Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative,positive,or neutral while associating them with their identified aspects from the corresponding context.In this regard,prior methodologies widely utilize either word embedding or tree-based rep-resentations.Meanwhile,the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss.Generally,word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence.Besides,the tree-based structure conserves the grammatical and logical dependencies of context.In addition,the sentence-oriented word position describes a critical factor that influences the contextual information of a targeted sentence.Therefore,knowledge of the position-oriented information of words in a sentence has been considered significant.In this study,we propose to use word embedding,tree-based representation,and contextual position information in combination to evaluate whether their combination will improve the result’s effectiveness or not.In the meantime,their joint utilization enhances the accurate identification and extraction of targeted aspect terms,which also influences their classification process.In this research paper,we propose a method named Attention Based Multi-Channel Convolutional Neural Net-work(Att-MC-CNN)that jointly utilizes these three deep features such as word embedding with tree-based structure and contextual position informa-tion.These three parameters deliver to Multi-Channel Convolutional Neural Network(MC-CNN)that identifies and extracts the potential terms and classifies their polarities.In addition,these terms have been further filtered with the attention mechanism,which determines the most significant words.The empirical analysis proves the proposed approach’s effectiveness compared to existing techniques when evaluated on standard datasets.The experimental results represent our approach outperforms in the F1 measure with an overall achievement of 94%in identifying aspects and 92%in the task of sentiment classification. 展开更多
关键词 Sentiment analysis word embedding aspect extraction consistency tree multichannel convolutional neural network contextual position information
下载PDF
基于多嵌入融合的top-N推荐
7
作者 杨真真 王东涛 +1 位作者 杨永鹏 华仁玉 《计算机科学》 CSCD 北大核心 2024年第7期140-145,共6页
异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-... 异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-N推荐的多嵌入融合推荐(Multi-embedding Fusion Recommendation, MFRec)模型。首先,该模型在用户和项目学习分支中都采用对象上下文表示网络,充分利用上下文信息以放大局部特征,增强相邻节点的交互性;其次,将空洞卷积和空间金字塔池化引入元路径学习分支,以便获取多尺度信息并增强元路径的节点表示;然后,采用多嵌入融合模块以便更好地进行用户、项目以及元路径的嵌入融合,细粒度地进行多嵌入之间的交互学习,并强调了各特征的不同重要性程度;最后,在两个公共推荐系统数据集上进行了实验,结果表明所提模型MFRec优于现有的其他top-N推荐系统模型。 展开更多
关键词 异构信息网络 推荐系统 top-N推荐 多嵌入融合 注意力机制
下载PDF
Research on Heterogeneous Information Network Link Prediction Based on Representation Learning
8
作者 Yan Zhao Weifeng Rao +1 位作者 Zihui Hu Qi Zheng 《Journal of Electronic Research and Application》 2024年第5期32-37,共6页
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth... A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification. 展开更多
关键词 Heterogeneous information network Link prediction Presentation learning Deep learning Node embedding
下载PDF
融合项目特征级信息的稀疏兴趣网络序列推荐
9
作者 胡胜利 武静雯 林凯 《计算机工程与设计》 北大核心 2024年第6期1743-1749,共7页
在以往提取多兴趣嵌入的序列推荐模型中仅能通过聚类的方法发现少量兴趣概念,忽视项目交互序列中特征级信息对最终推荐结果的影响。针对此问题,对传统的多兴趣序列推荐模型进行改进,提出一种融合项目特征级信息的稀疏兴趣网络序列推荐... 在以往提取多兴趣嵌入的序列推荐模型中仅能通过聚类的方法发现少量兴趣概念,忽视项目交互序列中特征级信息对最终推荐结果的影响。针对此问题,对传统的多兴趣序列推荐模型进行改进,提出一种融合项目特征级信息的稀疏兴趣网络序列推荐模型。实验结果表明,相比其它模型,该模型可以更好捕捉用户的多样化偏好并缓解冷启动问题。在给定数据集上,该模型比传统的序列推荐模型在命中率上平均提高了6.4%,归一化折损累计增益平均提高了8.7%。 展开更多
关键词 深度学习 序列推荐 多兴趣 稀疏兴趣网络 嵌入表征 特征级信息 特征融合
下载PDF
融合信息瓶颈与图卷积的跨域推荐算法
10
作者 王永贵 胡鹏程 +2 位作者 时启文 赵炀 邹赫宇 《计算机工程与应用》 CSCD 北大核心 2024年第15期77-90,共14页
基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经... 基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经网络聚合有关联的用户-用户和项目-项目信息;利用注意力机制学习用户和项目偏好,以提高节点特征表示质量;考虑到两个领域的信息交互,将重叠用户进行嵌入表示的同时限制特定信息的编码,利用信息瓶颈理论设计了三种正则化器,以捕获域内和跨域用户-项目的相关性,并将不同领域的重叠用户表征对齐以解决负迁移问题。在Amazon数据集中的四对公开数据集上进行实验,实验结果表明该模型在MRR、HR@K和NDCG@K三个推荐性能指标上的表现均优于基线模型,在四对数据集上与最优对比基线模型相比,MRR平均提升34.36%,HR@10平均提升34.94%,NDCG@10平均提升36.83%,证明了IBGC模型的有效性。 展开更多
关键词 跨域推荐算法 用户冷启动推荐 图卷积神经网络 信息瓶颈理论 网络嵌入学习 注意力机制
下载PDF
Finding Communities by Decomposing and Embedding Heterogeneous Information Network
11
作者 Yue Kou De-Rong Shen +2 位作者 Dong Li Tie-Zheng Nie Ge Yu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第2期320-337,共18页
Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in ... Community discovery is an important task in social network analysis.However,most existing methods for community discovery rely on the topological structure alone.These methods ignore the rich information available in the content data.In order to solve this issue,in this paper,we present a community discovery method based on heterogeneous information network decomposition and embedding.Unlike traditional methods,our method takes into account topology,node content and edge content,which can supply abundant evidence for community discovery.First,an embedding-based similarity evaluation method is proposed,which decomposes the heterogeneous information network into several subnetworks,and extracts their potential deep representation to evaluate the similarities between nodes.Second,a bottom-up community discovery algorithm is proposed.Via leader nodes selection,initial community generation,and community expansion,communities can be found more efficiently.Third,some incremental maintenance strategies for the changes of networks are proposed.We conduct experimental studies based on three real-world social networks.Experiments demonstrate the effectiveness and the efficiency of our proposed method.Compared with the traditional methods,our method improves normalized mutual information(NMI)and the modularity by an average of 12%and 37%respectively. 展开更多
关键词 COMMUNITY DISCOVERY HETEROGENEOUS information network decomposition embedding INCREMENTAL maintenance
原文传递
基于特征增强与时空信息嵌入的涡扇发动机剩余寿命预测
12
作者 李勇成 李文骁 雷印杰 《计算机应用研究》 CSCD 北大核心 2024年第4期1001-1007,共7页
针对现有的剩余寿命预测方法对原始数据利用率不高以及多维数据特征提取能力不足的问题,提出了一种基于特征增强和时空信息嵌入的卷积神经模型。首先,通过特征增强模块在原始数据基础上进一步提取工况特征与手工特征作为辅助特征;其次,... 针对现有的剩余寿命预测方法对原始数据利用率不高以及多维数据特征提取能力不足的问题,提出了一种基于特征增强和时空信息嵌入的卷积神经模型。首先,通过特征增强模块在原始数据基础上进一步提取工况特征与手工特征作为辅助特征;其次,提出了时空嵌入模块,对原始数据进行时空信息编码以嵌入时间序列信息和空间特征信息;最后,拼接上述特征并通过回归预测模块捕获数据内在关系得到回归预测结果。在通用的涡扇发动机模拟数据集(C-MAPSS)上对该模型预测效果进行了测试。实验结果表明,与现有主流深度学习方法相比,该模型在四个子集上的均方根误差平均减少了8.8%,且在多工况的运行条件和故障类型下,其预测精度均优于现有先进算法,充分证明了该模型在涡扇发动机剩余使用寿命预测方面的有效性和准确性。 展开更多
关键词 剩余寿命预测 特征增强 时空信息嵌入 卷积神经网络
下载PDF
基于双向长短时记忆和卷积Transformer的声学词嵌入模型
13
作者 高芸芸 赵腊生 张强 《计算机应用》 CSCD 北大核心 2024年第1期123-128,共6页
示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型。首先,使用Bi-L... 示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型。首先,使用Bi-LSTM提取特征、对语音序列进行建模,并通过叠加方式来提高模型的学习能力;其次,为了能在捕获全局信息的同时学习到局部信息,将CNN和Transformer编码器并联连接组成卷积Transformer,充分利用它在特征提取上的优势,聚合更多有效的信息,提高嵌入的区分性。在对比损失约束下,所提模型平均精度达到了94.36%,与基于注意力的Bi-LSTM模型相比,平均精度提高了1.76%。实验结果表明,所提模型可以有效改善模型性能,更好地实现示例查询语音关键词检测。 展开更多
关键词 卷积神经网络 声学词嵌入 语音信息 示例查询语音关键词检测 循环神经网络
下载PDF
A Review on the Recent Trends of Image Steganography for VANET Applications
14
作者 Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第3期2865-2892,共28页
Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate w... Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods. 展开更多
关键词 STEGANOGRAPHY image steganography image steganography techniques information exchange data embedding and extracting vehicular ad hoc network(VANET) transportation system
下载PDF
基于多信息融合的DGPMIF致病基因关联预测方法
15
作者 马金龙 翟美静 《河北工业科技》 CAS 2024年第1期27-35,共9页
为了解决利用单一生物数据无法揭示复杂的生物过程和疾病机制的问题,提出了一种多信息融合的DGPMIF致病基因预测方法。首先,构建一个具有疾病-表型、疾病-基因、蛋白质-蛋白质和基因-本体关联的异构网络,利用网络嵌入算法提取该异构网... 为了解决利用单一生物数据无法揭示复杂的生物过程和疾病机制的问题,提出了一种多信息融合的DGPMIF致病基因预测方法。首先,构建一个具有疾病-表型、疾病-基因、蛋白质-蛋白质和基因-本体关联的异构网络,利用网络嵌入算法提取该异构网络中节点的低维向量表示,同时结合网络拓扑算法提取网络结构特征。其次,利用余弦相似性算法衡量节点向量的相似性,预测疾病与基因之间的关系。最后,通过对特定疾病的案例进行研究,并与经典致病基因预测方法进行对比,验证DGPMIF方法的有效性。结果表明:不同类型的关联数据对增强致病基因预测性能具有重要作用;经过多层次信息融合,提高了致病基因预测的预测性能。DGPMIF预测方法能够高效挖掘网络中蕴含的信息,对相关疾病基因关联的预测研究具有重要的参考价值。 展开更多
关键词 人工智能其他学科 致病基因 异构网络 信息融合 网络嵌入 网络结构特征
下载PDF
基于协同知识嵌入注意网络的推荐算法研究
16
作者 师博雅 梁光成 +2 位作者 孙宇健 张家华 胡泉 《计算机应用与软件》 北大核心 2024年第4期297-305,共9页
推荐系统广泛用于实际应用场景中,现有利用图神经网络的基于知识图谱的解决方法忽略了对知识图谱中蕴含丰富关系知识的有效编码。提出一种协同知识嵌入注意网络模型,通过在知识高阶传播过程中融入翻译模型对以三元组形式表示的知识进行... 推荐系统广泛用于实际应用场景中,现有利用图神经网络的基于知识图谱的解决方法忽略了对知识图谱中蕴含丰富关系知识的有效编码。提出一种协同知识嵌入注意网络模型,通过在知识高阶传播过程中融入翻译模型对以三元组形式表示的知识进行有效编码,实现协同信息与知识传播更高效的融合方式,并通过拓展端到端模型CKAN完成推荐算法的设计。在三个真实推荐场景中的实验结果表明,相对于现有的KGCN、KGNN-LS、KGAT等方法,所提算法在点击率预测中的AUC值在Last.FM数据集上达到了0.8473,在Book-Crossing数据集上达到了0.7538,在Dianping-Food数据集上达到了0.8783;在Top-K推荐中的召回率均优于基准算法。 展开更多
关键词 推荐系统 协同过滤 异质信息网络 知识图谱嵌入 图卷积神经网络
下载PDF
Relational Topology-based Heterogeneous Network Embedding for Predicting Drug-Target Interactions
17
作者 Linlin Zhang Chunping Ouyang +2 位作者 Fuyu Hu Yongbin Liu Zheng Gao 《Data Intelligence》 EI 2023年第2期475-493,共19页
Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods ... Predicting interactions between drugs and target proteins has become an essential task in the drug discovery process.Although the method of validation via wet-lab experiments has become available,experimental methods for drug-target interaction(DTI)identification remain either time consuming or heavily dependent on domain expertise.Therefore,various computational models have been proposed to predict possible interactions between drugs and target proteins.However,most prediction methods do not consider the topological structures characteristics of the relationship.In this paper,we propose a relational topologybased heterogeneous network embedding method to predict drug-target interactions,abbreviated as RTHNE_DTI.We first construct a heterogeneous information network based on the interaction between different types of nodes,to enhance the ability of association discovery by fully considering the topology of the network.Then drug and target protein nodes can be represented by the other types of nodes.According to the different topological structure of the relationship between the nodes,we divide the relationship in the heterogeneous network into two categories and model them separately.Extensive experiments on the realworld drug datasets,RTHNE_DTI produces high efficiency and outperforms other state-of-the-art methods.RTHNE_DTI can be further used to predict the interaction between unknown interaction drug-target pairs. 展开更多
关键词 Link prediction Heterogeneous information network Drug-target interaction network embedding Feature representation
原文传递
Sensor Networking: Concepts, Applications, and Challenges 被引量:8
18
作者 YAO Kung 《自动化学报》 EI CSCD 北大核心 2006年第6期839-845,共7页
Sensor network has experienced world-wide explosive interests in recent years. It combines the technology of modern microelectronic sensors, embedded computational processing systems, and modern computer and wireless ... Sensor network has experienced world-wide explosive interests in recent years. It combines the technology of modern microelectronic sensors, embedded computational processing systems, and modern computer and wireless networking methodologies. In this overview paper, we first provide some rationales for the growth of sensor networking. Then we discuss various basic concepts and hardware issues. Four basic application cases in the US. National Science Foundation funded Ceneter for Embedded Networked Sensing program at UCLA are presented. Finally, six challenging issues in sensor networks are discussed. Numerous references including relevant papers, books, and conferences that have appeared in recent years are given. 展开更多
关键词 Sensor networks wireless communication embedded processing information processing environmental monitoring health care system ROBOTICS automated manufacturing
下载PDF
Active Probing Based Method for Fault Diagnosis Using Bayesian Network
19
作者 乔焰 邱雪松 +1 位作者 成璐 孟洛明 《China Communications》 SCIE CSCD 2011年第7期1-11,共11页
Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However a... Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks. 展开更多
关键词 fault diagnosis active probing Bayesian network information theory large-scale network
下载PDF
Deep Neural Network and Pseudo Relevance Feedback Based Query Expansion
20
作者 Abhishek Kumar Shukla Sujoy Das 《Computers, Materials & Continua》 SCIE EI 2022年第5期3557-3570,共14页
The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retriev... The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retrieval etc.Word embedding has been applied by many researchers for Information retrieval tasks.In this paper word embedding-based skip-gram model has been developed for the query expansion task.Vocabulary terms are obtained from the top“k”initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query.The performance of the model based on mean average precision is 0.3176.The proposed model compares with other existing models.An improvement of 6.61%,6.93%,and 9.07%on MAP value is observed compare to the Original query,BM25 model,and query expansion with the Chi-Square model respectively.The proposed model also retrieves 84,25,and 81 additional relevant documents compare to the original query,query expansion with Chi-Square model,and BM25 model respectively and thus improves the recall value also.The per query analysis reveals that the proposed model performs well in 30,36,and 30 queries compare to the original query,query expansion with Chi-square model,and BM25 model respectively. 展开更多
关键词 information retrieval query expansion word embedding neural network deep neural network
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部