The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method...The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.展开更多
An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbance...An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.展开更多
This paper focuses on the robust adaptive control problems for a class of interval time-delay systems and a class of large-scale interconnected systems. The nonlinear uncertainties of the systems under study are bound...This paper focuses on the robust adaptive control problems for a class of interval time-delay systems and a class of large-scale interconnected systems. The nonlinear uncertainties of the systems under study are bounded by high- order polynomial functions with unknown gains. Firstly, the adaptive feedback controller which can guarantee the stability of the closed-loop system in the sense of uniform ultimate boundedness is proposed. Then the proposed adaptive idea is extended to robust stabilizing designing method for a class of large-scale interconnected systems. Here, another problem we address is to design a decentralized feedback adaptive controller such that the closed-loop system is stable in the sense of uniform ultimate boundedness for all admissible uncertainties and time-delay. Finally, an illustrative example is given to show the validity of the proposed approach.展开更多
A general class of non-linear large-scale interconnected systems is considered,wherein each subsystem is comprised of a nominal part in a general strict-feedback-like structure and a set of appended dynamics.Parametri...A general class of non-linear large-scale interconnected systems is considered,wherein each subsystem is comprised of a nominal part in a general strict-feedback-like structure and a set of appended dynamics.Parametric and functional uncertainties and time delays are allowed throughout the overall system structure including the nominal strictfeedback-like parts and appended dynamics of each subsystem as well as the non-linear subsystem interconnections.The controller design is based on the dual dynamic highgain scaling technique and provides a robust adaptive delay-independent globally stabilising decentralised output-feedback controller.The disturbance attenuation properties of the proposed output-feedback decentralised controller to an exogenous disturbance input are also analysed and specific conditions under which properties such as Input-toOutput-practical-Stability and asymptotic stabilisation are attained are also discussed.展开更多
In this paper, two types of mathematical models are developed to describe the dynamics of large-scale nonlinear systems, which are composed of several interconnected nonlinear subsystems. Each subsystem can be describ...In this paper, two types of mathematical models are developed to describe the dynamics of large-scale nonlinear systems, which are composed of several interconnected nonlinear subsystems. Each subsystem can be described by an input-output nonlinear discrete-time mathematical model, with unknown, but constant or slowly time-varying parameters. Then, two recursive estimation methods are used to solve the parametric estimation problem for the considered class of the interconnected nonlinear systems. These methods are based on the recursive least squares techniques and the prediction error method. Convergence analysis is provided using the hyper-stability and positivity method and the differential equation approach. A numerical simulation example of the parametric estimation of a stochastic interconnected nonlinear hydraulic system is treated.展开更多
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
文摘The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.
基金This work was supported in part by the National Natural Science Foundation of China(61873151,62073201)in part by the Shandong Provincial Natural Science Foundation of China(ZR2019MF009)+2 种基金the Taishan Scholar Project of Shandong Province of China(tsqn201909078)the Major Scientific and Technological Innovation Project of Shandong Province,China(2019JAZZ020812)in part by the Major Program of Shandong Province Natural Science Foundation,China(ZR2018ZB0419).
文摘An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China (No. 60325311, 60274017).
文摘This paper focuses on the robust adaptive control problems for a class of interval time-delay systems and a class of large-scale interconnected systems. The nonlinear uncertainties of the systems under study are bounded by high- order polynomial functions with unknown gains. Firstly, the adaptive feedback controller which can guarantee the stability of the closed-loop system in the sense of uniform ultimate boundedness is proposed. Then the proposed adaptive idea is extended to robust stabilizing designing method for a class of large-scale interconnected systems. Here, another problem we address is to design a decentralized feedback adaptive controller such that the closed-loop system is stable in the sense of uniform ultimate boundedness for all admissible uncertainties and time-delay. Finally, an illustrative example is given to show the validity of the proposed approach.
基金This work was supported in part by the NSF[grant number ECS-0501539].
文摘A general class of non-linear large-scale interconnected systems is considered,wherein each subsystem is comprised of a nominal part in a general strict-feedback-like structure and a set of appended dynamics.Parametric and functional uncertainties and time delays are allowed throughout the overall system structure including the nominal strictfeedback-like parts and appended dynamics of each subsystem as well as the non-linear subsystem interconnections.The controller design is based on the dual dynamic highgain scaling technique and provides a robust adaptive delay-independent globally stabilising decentralised output-feedback controller.The disturbance attenuation properties of the proposed output-feedback decentralised controller to an exogenous disturbance input are also analysed and specific conditions under which properties such as Input-toOutput-practical-Stability and asymptotic stabilisation are attained are also discussed.
基金supported by the Ministry of Higher Education and Scientific Research of Tunisia
文摘In this paper, two types of mathematical models are developed to describe the dynamics of large-scale nonlinear systems, which are composed of several interconnected nonlinear subsystems. Each subsystem can be described by an input-output nonlinear discrete-time mathematical model, with unknown, but constant or slowly time-varying parameters. Then, two recursive estimation methods are used to solve the parametric estimation problem for the considered class of the interconnected nonlinear systems. These methods are based on the recursive least squares techniques and the prediction error method. Convergence analysis is provided using the hyper-stability and positivity method and the differential equation approach. A numerical simulation example of the parametric estimation of a stochastic interconnected nonlinear hydraulic system is treated.