Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundar...The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.展开更多
Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially availa...Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially available vaccine.Live vaccines containing Bb that are widely used abroad are generally efective but can establish latency and potentially reactivate to cause illness in some immunodefcient vaccinated recipients,raising safety concerns.In this study,34 canine-derived and two feline-derived Bb strains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023.The PCR results showed that the percentage of positive Bb was 22.94%(441/1922),and more than 90%of the Bb isolates had four virulence factor-encoding genes(VFGs),namely,fhaB,prn,betA and dnt.All the isolated strains displayed a multidrug-resistant phenotype.The virulence of 10 Bb strains isolated from dogs with respiratory symptoms was tested in mice,and we found that eight isolates were highly virulent.Furthermore,the eight Bb isolates with high virulence were inactivated and intramuscularly injected into mice,and three Bb strains(WH1218,WH1203 and WH1224)with the best protective efcacy were selected.Dogs immunized with these three strains exhibited strong protection against challenge with the Bb feld strain WH1218.Ultimately,the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate.Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bb feld strain WH1218.This study revealed that Bb is an important pathogen that causes respiratory diseases in domestic dogs and cats in China,and all the isolates exhibited multidrug resistance.The present work contributes to the current understanding of the prevalence,antimicrobial resistance,and virulence genes of Bb in domestic dogs and cats.Additionally,our results suggest that the WH1218 strain is a promising candidate safe and efcacious inactivated Bb vaccine.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases a...Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but...BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.展开更多
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit att...To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.展开更多
We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi...We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s...The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.展开更多
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金The research work described herein was funded by the National Nature Science Foundation of China(Grant No.41877213).This financial support is gratefully acknowledged.
文摘The boundary condition is a crucial factor affecting the permeability variation due to suffusion.An experimental investigation on the permeability of gap-graded soil due to horizontal suffusion considering the boundary effect is conducted,where the hydraulic head difference(DH)varies,and the boundary includes non-loss and soil-loss conditions.Soil samples are filled into seven soil storerooms connected in turn.After evaluation,the variation in content of fine sand(ΔR_(f))and the hydraulic conductivity of soils in each storeroom(C_(i))are analyzed.In the non-loss test,the soil sample filling area is divided into runoff,transited,and accumulated areas according to the negative or positive ΔR_(f) values.ΔR_(f) increases from negative to positive along the seepage path,and Ci decreases from runoff area to transited area and then rebounds in accumulated area.In the soil-loss test,all soil sample filling areas belong to the runoff area,where the gentle-loss,strengthened-loss,and alleviated-loss parts are further divided.ΔR_(f) decreases from the gentle-loss part to the strengthened-loss part and then rebounds in the alleviated-loss part,and C_(i) increases and then decreases along the seepage path.The relationship between ΔR_(f) and Ci is different with the boundary condition.Ci exponentially decreases with ΔR_(f) in the non-loss test and increases with ΔR_(f) generally in the soil-loss test.
基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030007).
文摘Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially available vaccine.Live vaccines containing Bb that are widely used abroad are generally efective but can establish latency and potentially reactivate to cause illness in some immunodefcient vaccinated recipients,raising safety concerns.In this study,34 canine-derived and two feline-derived Bb strains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023.The PCR results showed that the percentage of positive Bb was 22.94%(441/1922),and more than 90%of the Bb isolates had four virulence factor-encoding genes(VFGs),namely,fhaB,prn,betA and dnt.All the isolated strains displayed a multidrug-resistant phenotype.The virulence of 10 Bb strains isolated from dogs with respiratory symptoms was tested in mice,and we found that eight isolates were highly virulent.Furthermore,the eight Bb isolates with high virulence were inactivated and intramuscularly injected into mice,and three Bb strains(WH1218,WH1203 and WH1224)with the best protective efcacy were selected.Dogs immunized with these three strains exhibited strong protection against challenge with the Bb feld strain WH1218.Ultimately,the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate.Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bb feld strain WH1218.This study revealed that Bb is an important pathogen that causes respiratory diseases in domestic dogs and cats in China,and all the isolates exhibited multidrug resistance.The present work contributes to the current understanding of the prevalence,antimicrobial resistance,and virulence genes of Bb in domestic dogs and cats.Additionally,our results suggest that the WH1218 strain is a promising candidate safe and efcacious inactivated Bb vaccine.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金supported by the National Key Research and Development Program[2022YFC2302700].
文摘Objective Genotypes(G)1,3,and 5 of the Japanese encephalitis virus(JEV)have been isolated in China,but the dominant genotype circulating in Chinese coastal areas remains unknown.We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis(JE)in the coastal provinces of China.Methods In this study,we collected serum specimens from patients with JE in three coastal provinces of China(Guangdong,Zhejiang,and Shandong)from 2018 to 2020 and conducted JEV cross-neutralization tests against G1,G3,and G5.Results Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong(92 patients),Zhejiang(192 patients),and Guangdong(77 patients),China,from 2018 to 2020.Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV.Two cases were confirmed to be infected with G1 JEV,32 with G3 JEV,and two with G5 JEV.Conclusion G3 was the primary infection genotype among JE cases with a definite infection genotype,and the infection caused by G5 JEV was confirmed serologically in China.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
文摘BACKGROUND Diabetic peripheral neuropathy(DPN)is a debilitating complication of diabetes mellitus with limited available treatment options.Radix Salviae,a traditional Chinese herb,has shown promise in treating DPN,but its therapeutic mech-anisms have not been systematically investigated.AIM Radix Salviae(Danshen in pinin),a traditional Chinese medicine(TCM),is widely used to treat DPN in China.However,the mechanism through which Radix Salviae treats DPN remains unclear.Therefore,we aimed to explore the mechanism of action of Radix Salviae against DPN using network pharmacology.METHODS The active ingredients and target genes of Radix Salviae were screened using the TCM pharmacology database and analysis platform.The genes associated with DPN were obtained from the Gene Cards and OMIM databases,a drug-com-position-target-disease network was constructed,and a protein–protein inter-action network was subsequently constructed to screen the main targets.Gene Ontology(GO)functional annotation and pathway enrichment analysis were performed via the Kyoto Encyclopedia of Genes and Genomes(KEGG)using Bioconductor.RESULTS A total of 56 effective components,108 targets and 4581 DPN-related target genes of Radix Salviae were screened.Intervention with Radix Salviae for DPN mainly involved 81 target genes.The top 30 major targets were selected for enrichment analysis of GO and KEGG pathways.CONCLUSION These results suggested that Radix Salviae could treat DPN by regulating the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway.Therefore,Danshen may affect DPN by regulating inflammation and apoptosis.
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金Supported by Youth Project of Natural Science Foundation of Anhui Province(2008085QC135)Postdoctoral Workstation Project of West Anhui University(WXBSH2020003)+4 种基金Key Program of Natural Science Research Project for Anhui Universities(KJ2021A0954)Forestry Carbon Sequestration Self-funded Science and Technology Project of Anhui Province(LJH[2022]267)Subject of Lu'an Forestry Bureau(0045021093)School-level Quality Engineering Project of West Anhui University(wxxy2021017)Provincial Quality Engineering Project of West Anhui University(2022jyxm1765).
文摘To figure out the disease occurrence of landscape plants in the main urban area of Lu'an City,the author investigated the disease occurrence of landscape plants in park green space,residential green space,unit attached green space and main road in the area under administration.The survey results showed that there were 29 species of urban landscape plant diseases,mainly powdery mildew and spot diseases.According to the characteristics of the diseases,the causes and problems of the diseases were analyzed,and the corresponding prevention and control measures were put forward.
基金Supported partly by NSF of China(Grant No.11801163)NSF of Hunan Province(Grant Nos.2021JJ50032,2023JJ50164 and 2023JJ50165)Degree&Postgraduate Reform Project of Hunan University of Technology and Hunan Province(Grant Nos.JGYB23009 and 2024JGYB210).
文摘We introduce a factorized Smith method(FSM)for solving large-scale highranked J-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
文摘The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.