Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling fact...Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
By using drilling,high-precision 3 D seismic data,data of geochemistry,logging and testing,the reservoir characteristics and accumulation conditions of the KL6-1 lithologic oilfield in the Laibei Low Uplift in the Boh...By using drilling,high-precision 3 D seismic data,data of geochemistry,logging and testing,the reservoir characteristics and accumulation conditions of the KL6-1 lithologic oilfield in the Laibei Low Uplift in the Bohai Sea are examined comprehensively.The study shows that:KL6-1 oilfield is a monolithic,high-quality,large-scale Neogene lithologic oilfield featuring shallow reservoir depth,high productivity,concentrated oil-bearing intervals,large oil-bearing area,and high reserve abundance;hydrocarbon source supply from two directions provides a sufficient material basis for the formation of large oil field;two types of"inherited structural ridge"developed under the effect of block rotation,late active faults formed by Neotectonic movement,and widely distributed contiguous sand bodies provide an efficient oil and gas transportation system for the large-scale accumulation of oil and gas;contiguous channel and lacustrine lowstand system sand bodies developed in low accommodation condition provide the basic condition for the formation of large-scale lithologic traps;deep formations structural ridge,faults(dominant migration pathways)and large-scale superimposed contiguous sand bodies constitute a"vine type"oil and gas migration and accumulation system in the Laibei Low Uplift,which is conducive to the formation of large-scale and high-abundance lithologic reservoir in this area.The successful discovery of KL6-1,100 million ton reserve order lithologic oil field,has revealed the exploration potential of Neogene large lithologic reservoirs in Bohai Sea,expanded the exploration field,and also has certain reference significance for the exploration of large lithologic reservoirs in similar areas.展开更多
Taking the Jiyang depression as an example, this paper discusses the control of the formation of lithological reservoir by surrounding rocks by integrated application of geological analysis, physical simulation, and t...Taking the Jiyang depression as an example, this paper discusses the control of the formation of lithological reservoir by surrounding rocks by integrated application of geological analysis, physical simulation, and the analysis of oil & gas accumulation mechanism. Geological statistical shows that the major burial depth and interval of lithological reservoirs in the Jiyang depression are related to the hydrocarbon generation in and expulsion from the Lower Tertiary source rocks and the time of the formation of most lithological reservoirs coincides with the peak of hydrocarbon generation and expulsion. The lithological traps located in the center of effective source rocks are propitious to high oil saturation than those located on the margin of effective source rocks. The hydrocarbon charge degree of the lithological reservoir has a positive correlation with the intensity of hydrocarbon expulsion from surrounding source rocks. Geological analyses and NMR experiments also show that the oil saturation of surrounding source rocks control the hydrocarbon potential of lithological traps, and a critical value for oil saturation of surrounding mudstone is required, that is, when the oil saturation of surrounding mudstone is lower than this critical value, no oil and gas accumulate in the lithological trap. The control of surrounding mudstone on the oil-bearing properties of lithological reservoirs is also analyzed by the mechanisms of hydrocarbon generation and expulsion as well as accumulation.展开更多
By examining structures,sediments,reservoirs and accumulation assemblages in the Deyang-Anyue rift and its surrounding area,four new understandings are obtained.First,during the initiation period of Deyang-Anyue rift,...By examining structures,sediments,reservoirs and accumulation assemblages in the Deyang-Anyue rift and its surrounding area,four new understandings are obtained.First,during the initiation period of Deyang-Anyue rift,multiple groups of faults developed in the rift due to the effect of tensile force,bringing about multiple mound and shoal belts controlled by horsts in the second member of the Sinian Dengying Formation;in the development stage of the rift,the boundary faults of the rift controlled the development of mound and shoal belts at the platform margin in the fourth member of Dengying Formation;during the shrinkage period of the rift,platform margin grain shoals of the Cambrian Canglangpu Formation developed in the rift margin.Second,four sets of large-scale mound and shoal reservoirs in the second member of Dengying Formation,the fourth member of Dengying Formation,Canglangpu Formation and Longwangmiao Formation overlap with several sets of source rocks such as Qiongzhusi Formation source rocks and Dengying Formation argillaceous limestone or dolomite developed inside and outside the rift,forming good source-reservoir-cap rock combinations;the sealing of tight rock layers in the lateral and updip direction results in the formation model of large lithologic gas reservoirs of oil pool before gas,continuous charging and independent preservation of each gas reservoir.Third,six favorable exploration zones of large-scale lithologic gas reservoirs have been sorted out through comprehensive evaluation,namely,mound and shoal complex controlled by horsts in the northern part of the rift in the second member of Dengying Formation,isolated karst mound and shoal complex of the fourth member of Dengying Formation in the south of the rift,the superimposed area of multi-stage platform margin mounds and shoals of the second and fourth members of Dengying Formation and Canglangpu Formation in the north slope area,the platform margin mounds and shoals of the second and fourth members of Dengying Formation in the west side of the rift,the platform margin mound and shoal bodies of the fourth member of Dengying Formation in the south slope area,etc.Fourth,Well Pengtan-1 drilled on the mound and shoal complex controlled by horsts of the second member of Dengying Formation in the rift and Well Jiaotan-1 drilled on the platform margin mound and shoal complex of the North Slope have obtained high-yield gas flows in multiple target layers,marking the discovery of a new gas province with reserves of(2-3)×10^(12) m^(3).This has proved the huge exploration potential of large lithologic gas reservoir group related to intracratonic rift.展开更多
In recent years, a series of large low and medium abundance oil and gas fields are discovered through exploration activities onshore China, which are commonly characterized by low porosity-permeability reservoirs, low...In recent years, a series of large low and medium abundance oil and gas fields are discovered through exploration activities onshore China, which are commonly characterized by low porosity-permeability reservoirs, low oil/gas column height, multiple thin hydrocarbon layers, and distribution in overlapping and connection, and so on. The advantageous conditions for large-area accumulation of low-medium abundance hydrocarbon reservoirs include: (1) large (fan) delta sandbodies are developed in the hinterland of large flow-uncontrolled lake basins and they are alternated with source rocks extensively in a structure like "sandwiches"; (2) effective hydrocarbon source kitchens are extensively distributed, offering maximum contact chances with various sandbodies and hydrocarbon source rocks; (3) oil and gas columns are low in height, hydrocarbon layers are mainly of normal-low pressure, and requirements for seal rock are low; (4) reservoirs have strong inheterogeneity and gas reservoirs are badly connected; (5) the hydrocarbon desorption and expulsion under uplifting and unloading environments cause widely distributed hydrocarbon source rocks of coal measures to form large-area reservoirs; (6) deep basin areas and synclinal areas possess reservoir-forming dynamics. The areas with great exploration potential include the Paleozoic and Mesozoic in the Ordos Basin, the Xujiahe Formation in Dachuanzhong in the Sichuan basin, deep basin areas in the Songliao basin etc. The core techniques of improving exploration efficiency consist of the sweetspot prediction technique that focuses on fine characterization of reservoirs, the hydrocarbon layer protecting and high-speed drilling technique, and the rework technique for enhancing productivity.展开更多
Technological development, particularly the development of signal processing, has contributed to the improvement of the quality of results in the analysis of the characteristics of hydrocarbon reservoirs. This scienti...Technological development, particularly the development of signal processing, has contributed to the improvement of the quality of results in the analysis of the characteristics of hydrocarbon reservoirs. This scientific advance is especially marked by the introduction of seismic attributes in the characterization of reservoirs. This paper is aimed at evaluating the contribution of seismic attributes in the lithological characterization of hydrocarbon accumulation zones. Thus, it has been found that instantaneous attributes make it possible to highlight the different properties of reservoir rocks. Techniques for extracting three-dimensional volume attributes have been applied to a 3D seismic data volume of the F3 block in the Dutch sector of the North Sea. The purpose of using these volume attributes is to extract signal characteristics from lithofacies in hydrocarbon zones. The results provide a remarkable contribution to instantaneous seismic attributes in reservoir location, hydrocarbon detection, and reservoir lithological prediction. The instantaneous amplitude, the derivative of amplitude 1, the factor Q, the energy and the Hilbert transform are attributes which highlight the presence of hydrocarbons through the bright spots. Thus, curvature, similarity, dip, and coherence are useful in the determination of traps such as faults and anticlines. The crossing of the instantaneous amplitude and the instantaneous frequency makes it possible to analyze the lithofacies. In the same way, the analysis of the crossed diagrams between the porosity and the instantaneous amplitude made it possible to define the different layers of the reservoir.展开更多
Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origi...Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origin,accumulation evolution,accumulation pattern and formation conditions of large lithologic gas reservoirs have been investigated.Through comprehensive analyses of natural gas composition,carbon and hydrogen isotopic compositions,fluid inclusions,reservoir bitumen,and geological conditions such as lithofacies paleogeography and beach body characterization,it is concluded that:(1)The natural gas in the Sinian-Cambrian of the north slope area is mainly oil cracking gas,and different contribution ratios of multiple sets of source rocks lead to different geochemical characteristics of natural gas in different reservoirs.(2)Although the both Sinian and Cambrian gas reservoirs in this area are lithologic gas reservoirs under monocline background,the former has normal-pressure and the latter has high-pressure.There are three types of source-reservoir-caprock combinations:single source with lower generation and upper reservoir,double sources with lower generation and upper reservoir or with side source and lateral reservoir,double sources with lower generation and upper reservoir or with upper generation and lower reservoir.The Permian-Triassic is the main generation period of oil,Early-Middle Jurassic is the main generation period of oil cracking gas and wet gas,and Late Jurassic-Cretaceous is the main generation period of dry gas.(3)The Sinian-Cambrian system of the north slope area has two favorable conditions for formation of large lithologic gas reservoirs,one is that the large scale beach facies reservoirs are located in the range of ancient oil reservoirs or near the source rocks,which is conducive to the"in-situ"large-scale accumulation of cracked gas in the paleo-oil reservoirs,the other is that the large scale mound-beach complex reservoirs and sealing layers of inter beach tight zones match effectively to form large lithologic traps under the slope background.The research results confirm that the north slope area has large multi-layer lithologic gas reservoirs with more than one trillion cubic meters of natural gas resources and great exploration potential.展开更多
Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extre...Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reeI^bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective.展开更多
Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat...Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.展开更多
In order to obtain effective parameters for complex sand reservoirs,a log evaluation method for relevant reservoir parameters is established based on an analysis in the gas-bearing sandstone with high porosity and low...In order to obtain effective parameters for complex sand reservoirs,a log evaluation method for relevant reservoir parameters is established based on an analysis in the gas-bearing sandstone with high porosity and low permeability,low porosity and permeability and on various characteristics of log responses to reservoir lithologies and physical properties in the Neopleozoic sand reservoir of the Ordos basin.This log evaluation method covers the Cook method that is used to evaluate the porosity and oiliness in high porosity and low permeability reservoirs and another method in which the mineral content,derived from geochemical logs,is used to identify formation lithologies.Some areas have high calcium and low silt content,not uniformly distributed,the results of which show up in the complex formation lithologies and conventional log responses with great deviation.The reliability of the method is verified by comparison with conventional log data and core analyses.The calculation results coincide with the core analytical data and gas tests,which indicate that this log evaluation method is available,provides novel ideas for study of similar complex reservoir lithologies and has some reference value.展开更多
The petrophysical parameters are bad in most igneous reservoirs of Songliao Basin because of the very low porosity and permeability.The evaluation of igneous reservoirs has not been fully studied so far.The current te...The petrophysical parameters are bad in most igneous reservoirs of Songliao Basin because of the very low porosity and permeability.The evaluation of igneous reservoirs has not been fully studied so far.The current technique of formation evaluation and interpretation used in sedimentary formations face a series of problems and difficulties.In this study,The PCA was used to identify lithology,a multi-mineral model "QAPM" was proposed."Surface effect" must be considered when evaluating saturation.A software "SIMPLE" was developed and was used to deal with the logging data in over 70 wells with good results were achieved.展开更多
At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic res...At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic reservoirs) have been found. Since both the amount and reserve of the discovered subtle reservoirs are small, a great exploration potential remains in the Taibei Sag. The shallow to medium formations in the west of the Taibei Sag were divided into three second-order sequences and ten third-order sequences, of which the rising cyclothems of SQ(J2q) and SQ8 (J2s2) datum level are major exploration targets for the subtle reservoirs (lithologic). The depositional systems of Qiquanhu and Subashi braided river delta were developed there, where the sedimentary sand body is dominated by the regional slopes and slope break belts. There are four main modes the formation of lithologic traps: deltaic front onlap on the slope belt, deltaic front toplap on the slope break belt, lately tilted frontal sand body and sublacustrine fan—slope fan on the slope break belt, of which the first three modes are the major styles of the formation of subtle reservoirs. Major targets for subtle reservoir exploration in the near future include Putaogou Member on the north slope of Huoyanshan, the east slope of Pubei, the nose-like palaeohigh regions of Huobei, Subashi and Lianmuqin, around the Shengbei secondary sag.展开更多
Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined ...Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined with high-precision CT scanning digital core model reconstruction technology, hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs are studied. The research shows that: In thin interbedded shale oil reservoir, the interlayer difference of rock mechanics and the interlayer interface near the wellbore cannot restrain the growth of fracture height effectively, but has a significant impact on the fracture width distribution in the fracture height direction. Hydraulic fractures in these reservoirs tend to penetrate into the adjacent layer in “step-like” form, but have a smaller width at the interface deflection, which hinders the transport of proppant in vertical direction, resulting in a poor effect of layer-crossing growth. In shale layers with dense laminae, hydraulic fractures tend to form “丰” or “井” shapes. If the perforated interval is large in rock strength and high in breakdown pressure, the main fracture is fully developed initially, large in width, and supported by enough sand. In contrast, if the perforated interval is low in strength and rich in laminae, the fracturing fluid filtration loss is large, the breakdown pressure is low, the main fracture will not open wide initially, and likely to have sand plugging. Proppant is mainly concentrated in the main hydraulic fractures with large width near the perforated layer, activated laminae, branch fractures and fractures in adjacent layers contain only a small amount of(or zero) proppant. The proppant is placed in a limited range on the whole. The limit width of fracture that proppant can enter is about 2.7 times the proppant particle size.展开更多
基金Supported by the China National Science and Technology Major Project(2011ZX05023-006-002,2016ZX05024-003).
文摘Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003)。
文摘By using drilling,high-precision 3 D seismic data,data of geochemistry,logging and testing,the reservoir characteristics and accumulation conditions of the KL6-1 lithologic oilfield in the Laibei Low Uplift in the Bohai Sea are examined comprehensively.The study shows that:KL6-1 oilfield is a monolithic,high-quality,large-scale Neogene lithologic oilfield featuring shallow reservoir depth,high productivity,concentrated oil-bearing intervals,large oil-bearing area,and high reserve abundance;hydrocarbon source supply from two directions provides a sufficient material basis for the formation of large oil field;two types of"inherited structural ridge"developed under the effect of block rotation,late active faults formed by Neotectonic movement,and widely distributed contiguous sand bodies provide an efficient oil and gas transportation system for the large-scale accumulation of oil and gas;contiguous channel and lacustrine lowstand system sand bodies developed in low accommodation condition provide the basic condition for the formation of large-scale lithologic traps;deep formations structural ridge,faults(dominant migration pathways)and large-scale superimposed contiguous sand bodies constitute a"vine type"oil and gas migration and accumulation system in the Laibei Low Uplift,which is conducive to the formation of large-scale and high-abundance lithologic reservoir in this area.The successful discovery of KL6-1,100 million ton reserve order lithologic oil field,has revealed the exploration potential of Neogene large lithologic reservoirs in Bohai Sea,expanded the exploration field,and also has certain reference significance for the exploration of large lithologic reservoirs in similar areas.
基金Supported by National Natural Science Fund 40472078 and the Project of "973 plan" G1999043310
文摘Taking the Jiyang depression as an example, this paper discusses the control of the formation of lithological reservoir by surrounding rocks by integrated application of geological analysis, physical simulation, and the analysis of oil & gas accumulation mechanism. Geological statistical shows that the major burial depth and interval of lithological reservoirs in the Jiyang depression are related to the hydrocarbon generation in and expulsion from the Lower Tertiary source rocks and the time of the formation of most lithological reservoirs coincides with the peak of hydrocarbon generation and expulsion. The lithological traps located in the center of effective source rocks are propitious to high oil saturation than those located on the margin of effective source rocks. The hydrocarbon charge degree of the lithological reservoir has a positive correlation with the intensity of hydrocarbon expulsion from surrounding source rocks. Geological analyses and NMR experiments also show that the oil saturation of surrounding source rocks control the hydrocarbon potential of lithological traps, and a critical value for oil saturation of surrounding mudstone is required, that is, when the oil saturation of surrounding mudstone is lower than this critical value, no oil and gas accumulate in the lithological trap. The control of surrounding mudstone on the oil-bearing properties of lithological reservoirs is also analyzed by the mechanisms of hydrocarbon generation and expulsion as well as accumulation.
基金Supported by the National Science and Technology Major Project(2016ZX05007-002)。
文摘By examining structures,sediments,reservoirs and accumulation assemblages in the Deyang-Anyue rift and its surrounding area,four new understandings are obtained.First,during the initiation period of Deyang-Anyue rift,multiple groups of faults developed in the rift due to the effect of tensile force,bringing about multiple mound and shoal belts controlled by horsts in the second member of the Sinian Dengying Formation;in the development stage of the rift,the boundary faults of the rift controlled the development of mound and shoal belts at the platform margin in the fourth member of Dengying Formation;during the shrinkage period of the rift,platform margin grain shoals of the Cambrian Canglangpu Formation developed in the rift margin.Second,four sets of large-scale mound and shoal reservoirs in the second member of Dengying Formation,the fourth member of Dengying Formation,Canglangpu Formation and Longwangmiao Formation overlap with several sets of source rocks such as Qiongzhusi Formation source rocks and Dengying Formation argillaceous limestone or dolomite developed inside and outside the rift,forming good source-reservoir-cap rock combinations;the sealing of tight rock layers in the lateral and updip direction results in the formation model of large lithologic gas reservoirs of oil pool before gas,continuous charging and independent preservation of each gas reservoir.Third,six favorable exploration zones of large-scale lithologic gas reservoirs have been sorted out through comprehensive evaluation,namely,mound and shoal complex controlled by horsts in the northern part of the rift in the second member of Dengying Formation,isolated karst mound and shoal complex of the fourth member of Dengying Formation in the south of the rift,the superimposed area of multi-stage platform margin mounds and shoals of the second and fourth members of Dengying Formation and Canglangpu Formation in the north slope area,the platform margin mounds and shoals of the second and fourth members of Dengying Formation in the west side of the rift,the platform margin mound and shoal bodies of the fourth member of Dengying Formation in the south slope area,etc.Fourth,Well Pengtan-1 drilled on the mound and shoal complex controlled by horsts of the second member of Dengying Formation in the rift and Well Jiaotan-1 drilled on the platform margin mound and shoal complex of the North Slope have obtained high-yield gas flows in multiple target layers,marking the discovery of a new gas province with reserves of(2-3)×10^(12) m^(3).This has proved the huge exploration potential of large lithologic gas reservoir group related to intracratonic rift.
文摘In recent years, a series of large low and medium abundance oil and gas fields are discovered through exploration activities onshore China, which are commonly characterized by low porosity-permeability reservoirs, low oil/gas column height, multiple thin hydrocarbon layers, and distribution in overlapping and connection, and so on. The advantageous conditions for large-area accumulation of low-medium abundance hydrocarbon reservoirs include: (1) large (fan) delta sandbodies are developed in the hinterland of large flow-uncontrolled lake basins and they are alternated with source rocks extensively in a structure like "sandwiches"; (2) effective hydrocarbon source kitchens are extensively distributed, offering maximum contact chances with various sandbodies and hydrocarbon source rocks; (3) oil and gas columns are low in height, hydrocarbon layers are mainly of normal-low pressure, and requirements for seal rock are low; (4) reservoirs have strong inheterogeneity and gas reservoirs are badly connected; (5) the hydrocarbon desorption and expulsion under uplifting and unloading environments cause widely distributed hydrocarbon source rocks of coal measures to form large-area reservoirs; (6) deep basin areas and synclinal areas possess reservoir-forming dynamics. The areas with great exploration potential include the Paleozoic and Mesozoic in the Ordos Basin, the Xujiahe Formation in Dachuanzhong in the Sichuan basin, deep basin areas in the Songliao basin etc. The core techniques of improving exploration efficiency consist of the sweetspot prediction technique that focuses on fine characterization of reservoirs, the hydrocarbon layer protecting and high-speed drilling technique, and the rework technique for enhancing productivity.
文摘Technological development, particularly the development of signal processing, has contributed to the improvement of the quality of results in the analysis of the characteristics of hydrocarbon reservoirs. This scientific advance is especially marked by the introduction of seismic attributes in the characterization of reservoirs. This paper is aimed at evaluating the contribution of seismic attributes in the lithological characterization of hydrocarbon accumulation zones. Thus, it has been found that instantaneous attributes make it possible to highlight the different properties of reservoir rocks. Techniques for extracting three-dimensional volume attributes have been applied to a 3D seismic data volume of the F3 block in the Dutch sector of the North Sea. The purpose of using these volume attributes is to extract signal characteristics from lithofacies in hydrocarbon zones. The results provide a remarkable contribution to instantaneous seismic attributes in reservoir location, hydrocarbon detection, and reservoir lithological prediction. The instantaneous amplitude, the derivative of amplitude 1, the factor Q, the energy and the Hilbert transform are attributes which highlight the presence of hydrocarbons through the bright spots. Thus, curvature, similarity, dip, and coherence are useful in the determination of traps such as faults and anticlines. The crossing of the instantaneous amplitude and the instantaneous frequency makes it possible to analyze the lithofacies. In the same way, the analysis of the crossed diagrams between the porosity and the instantaneous amplitude made it possible to define the different layers of the reservoir.
基金Chinese Academy of Sciences Strategic Pilot Science and Technology Project(Class A)(XDA14010403)National Science and Technology Major Project(2016ZX05007)PetroChina Science and Technology Project(2021DJ0604,kt2020-01-03)。
文摘Based on analyses of characteristics,hydrocarbon charging history and geological conditions for the formation of Sinian-Cambrian reservoirs in the north slope area of central Sichuan paleo-uplift,the natural gas origin,accumulation evolution,accumulation pattern and formation conditions of large lithologic gas reservoirs have been investigated.Through comprehensive analyses of natural gas composition,carbon and hydrogen isotopic compositions,fluid inclusions,reservoir bitumen,and geological conditions such as lithofacies paleogeography and beach body characterization,it is concluded that:(1)The natural gas in the Sinian-Cambrian of the north slope area is mainly oil cracking gas,and different contribution ratios of multiple sets of source rocks lead to different geochemical characteristics of natural gas in different reservoirs.(2)Although the both Sinian and Cambrian gas reservoirs in this area are lithologic gas reservoirs under monocline background,the former has normal-pressure and the latter has high-pressure.There are three types of source-reservoir-caprock combinations:single source with lower generation and upper reservoir,double sources with lower generation and upper reservoir or with side source and lateral reservoir,double sources with lower generation and upper reservoir or with upper generation and lower reservoir.The Permian-Triassic is the main generation period of oil,Early-Middle Jurassic is the main generation period of oil cracking gas and wet gas,and Late Jurassic-Cretaceous is the main generation period of dry gas.(3)The Sinian-Cambrian system of the north slope area has two favorable conditions for formation of large lithologic gas reservoirs,one is that the large scale beach facies reservoirs are located in the range of ancient oil reservoirs or near the source rocks,which is conducive to the"in-situ"large-scale accumulation of cracked gas in the paleo-oil reservoirs,the other is that the large scale mound-beach complex reservoirs and sealing layers of inter beach tight zones match effectively to form large lithologic traps under the slope background.The research results confirm that the north slope area has large multi-layer lithologic gas reservoirs with more than one trillion cubic meters of natural gas resources and great exploration potential.
基金sponsored by the National S&T Major Special Project(No.2008ZX05020-01)
文摘Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reeI^bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective.
基金Supported by the National Science and Technology Major Project(2016ZX05003-002)Scientific Research Project of Petro China Company Limited(2016E-0601)
文摘Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.
基金supported by the Program for New Century Excellent Talents in Universities
文摘In order to obtain effective parameters for complex sand reservoirs,a log evaluation method for relevant reservoir parameters is established based on an analysis in the gas-bearing sandstone with high porosity and low permeability,low porosity and permeability and on various characteristics of log responses to reservoir lithologies and physical properties in the Neopleozoic sand reservoir of the Ordos basin.This log evaluation method covers the Cook method that is used to evaluate the porosity and oiliness in high porosity and low permeability reservoirs and another method in which the mineral content,derived from geochemical logs,is used to identify formation lithologies.Some areas have high calcium and low silt content,not uniformly distributed,the results of which show up in the complex formation lithologies and conventional log responses with great deviation.The reliability of the method is verified by comparison with conventional log data and core analyses.The calculation results coincide with the core analytical data and gas tests,which indicate that this log evaluation method is available,provides novel ideas for study of similar complex reservoir lithologies and has some reference value.
基金Supported by National Oil-gas Project : No XQ-2004-07
文摘The petrophysical parameters are bad in most igneous reservoirs of Songliao Basin because of the very low porosity and permeability.The evaluation of igneous reservoirs has not been fully studied so far.The current technique of formation evaluation and interpretation used in sedimentary formations face a series of problems and difficulties.In this study,The PCA was used to identify lithology,a multi-mineral model "QAPM" was proposed."Surface effect" must be considered when evaluating saturation.A software "SIMPLE" was developed and was used to deal with the logging data in over 70 wells with good results were achieved.
文摘At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic reservoirs) have been found. Since both the amount and reserve of the discovered subtle reservoirs are small, a great exploration potential remains in the Taibei Sag. The shallow to medium formations in the west of the Taibei Sag were divided into three second-order sequences and ten third-order sequences, of which the rising cyclothems of SQ(J2q) and SQ8 (J2s2) datum level are major exploration targets for the subtle reservoirs (lithologic). The depositional systems of Qiquanhu and Subashi braided river delta were developed there, where the sedimentary sand body is dominated by the regional slopes and slope break belts. There are four main modes the formation of lithologic traps: deltaic front onlap on the slope belt, deltaic front toplap on the slope break belt, lately tilted frontal sand body and sublacustrine fan—slope fan on the slope break belt, of which the first three modes are the major styles of the formation of subtle reservoirs. Major targets for subtle reservoir exploration in the near future include Putaogou Member on the north slope of Huoyanshan, the east slope of Pubei, the nose-like palaeohigh regions of Huobei, Subashi and Lianmuqin, around the Shengbei secondary sag.
基金National Natural Science Foundation of China(NO.51974332)Strategic Cooperation Project Between PetroChina and China University of Petroleum(Beijing)(NO.ZLZX2020-07)。
文摘Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined with high-precision CT scanning digital core model reconstruction technology, hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs are studied. The research shows that: In thin interbedded shale oil reservoir, the interlayer difference of rock mechanics and the interlayer interface near the wellbore cannot restrain the growth of fracture height effectively, but has a significant impact on the fracture width distribution in the fracture height direction. Hydraulic fractures in these reservoirs tend to penetrate into the adjacent layer in “step-like” form, but have a smaller width at the interface deflection, which hinders the transport of proppant in vertical direction, resulting in a poor effect of layer-crossing growth. In shale layers with dense laminae, hydraulic fractures tend to form “丰” or “井” shapes. If the perforated interval is large in rock strength and high in breakdown pressure, the main fracture is fully developed initially, large in width, and supported by enough sand. In contrast, if the perforated interval is low in strength and rich in laminae, the fracturing fluid filtration loss is large, the breakdown pressure is low, the main fracture will not open wide initially, and likely to have sand plugging. Proppant is mainly concentrated in the main hydraulic fractures with large width near the perforated layer, activated laminae, branch fractures and fractures in adjacent layers contain only a small amount of(or zero) proppant. The proppant is placed in a limited range on the whole. The limit width of fracture that proppant can enter is about 2.7 times the proppant particle size.