BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However...BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However,no previous meta-analysis has assessed the effects of body mass index(BMI)on adverse kidney events in patients with DM.AIM To determine the impact of BMI on adverse kidney events in patients with DM.METHODS A systematic literature search was performed on the PubMed,ISI Web of Science,Scopus,Ovid,Google Scholar,EMBASE,and BMJ databases.We included trials with the following characteristics:(1)Type of study:Prospective,retrospective,randomized,and non-randomized in design;(2)participants:Restricted to patients with DM aged≥18 years;(3)intervention:No intervention;and(4)kidney adverse events:Onset of diabetic kidney disease[estimated glomerular filtration rate(eGFR)of<60 mL/min/1.73 m2 and/or microalbuminuria value of≥30 mg/g Cr],serum creatinine increase of more than double the baseline or end-stage renal disease(eGFR<15 mL/min/1.73 m2 or dialysis),or death.RESULTS Overall,11 studies involving 801 patients with DM were included.High BMI(≥25 kg/m2)was significantly associated with higher blood pressure(BP)[systolic BP by 0.20,95%confidence interval(CI):0.15–0.25,P<0.00001;diastolic BP by 0.21 mmHg,95%CI:0.04–0.37,P=0.010],serum albumin,triglycerides[standard mean difference(SMD)=0.35,95%CI:0.29–0.41,P<0.00001],low-density lipoprotein(SMD=0.12,95%CI:0.04–0.20,P=0.030),and lower high-density lipoprotein(SMD=–0.36,95%CI:–0.51 to–0.21,P<0.00001)in patients with DM compared with those with low BMIs(<25 kg/m2).Our analysis showed that high BMI was associated with a higher risk ratio of adverse kidney events than low BMI(RR:1.22,95%CI:1.01–1.43,P=0.036).CONCLUSION The present analysis suggested that high BMI was a risk factor for adverse kidney events in patients with DM.展开更多
Shaw's method used to correlate 40 sections across the Permo-Triassic boundary in South China is applied in the paper. Two steps are adopted to get an Integral Composite Section (ICS) by synthesizing these data : ...Shaw's method used to correlate 40 sections across the Permo-Triassic boundary in South China is applied in the paper. Two steps are adopted to get an Integral Composite Section (ICS) by synthesizing these data : First , South China is divided into five areas and composite section developed for each area . Then the second step . the Changxing composite section is regarded as a composite standard (CSRS) while the ICS is produced by matching the CSRS with composite sections of the other areas. Three biozones in the Changxingian and two biozones in the Griesbachian can be discerned on the basis of computing Z values in the ICS. These biozones are marked by the Z values which quantitatively represent their time ranges ; therefore , they may increase accuracy of stratigraphic time correlation . The mass extinction at the end of the Permian is an abrupt event that is supported by the relative rate of extinction near the P/T boundary . About 90% of invertebrate species died out by the end of the Permian . The duration of the mass extinction is rather short ,approximately 0.018Ma .展开更多
The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-...The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.展开更多
Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isent...Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Niña to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.展开更多
Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or s...Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or sliding in roof layers above the exploited panel in coal seam, sometime in a distance from actual exploitation. Sliding, as a rule occurs in fault zone and tremors in it are expected, but monolithic layer rupture is very hard to predict. In a past few years a practice of analyzing state of deformation in high energy seismic tremors zones has been employed. It let gathering experience thanks to witch determination of dangerous shape of reformatted roof is possible. In the paper some typical forms of roof rocks deformations leading to seismic tremor occurrence will be presented. In general these are various types of multidirectional rock layers bending. Real examples of seismic events and rock bursts will be shown.展开更多
This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR ...This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR events with zonal extent exceeding 90°of longitude on the peak day are identified.Using self-organizing map(SOM),the LSTRs are classified into five clusters that are characterized by different spatial distributions and orientations.The leading two clusters are closely associated with extensive and persistent cold events over different places.Considering the first cluster,LSTRs extend from the Ural Mountains to Northeast Asia and are favorable for the amplification and southeastward extension of the Siberian high.Therefore,this cluster is closely associated with the occurrence of extensive and persistent cold events in china.In comparison with the first cluster,the LSTRs of second group are situated to the west,with starting points from the Kola Peninsula,and cause extensive and persistent cold events over Eastern Europe,central Asia,and central Siberia.The results suggest that the vertical coupling between LSTRs and the corresponding anomalous sea level pressure is crucial for the persistent cold temperature events associated with the leading two SOM clusters.展开更多
An ensemble prediction model of solar proton events (SPEs), combining the information of solar flares and coronal mass ejections (CMEs), is built. In this model, solar flares are parameterized by the peak flux, th...An ensemble prediction model of solar proton events (SPEs), combining the information of solar flares and coronal mass ejections (CMEs), is built. In this model, solar flares are parameterized by the peak flux, the duration and the longitude. In addition, CMEs are parameterized by the width, the speed and the measurement position angle. The importance of each parameter for the occurrence of SPEs is estimated by the information gain ratio. We find that the CME width and speed are more informative than the flare’s peak flux and duration. As the physical mechanism of SPEs is not very clear, a hidden naive Bayes approach, which is a probability-based calculation method from the field of machine learning, is used to build the prediction model from the observational data. As is known, SPEs originate from solar flares and/or shock waves associated with CMEs. Hence, we first build two base prediction models using the properties of solar flares and CMEs, respectively. Then the outputs of these models are combined to generate the ensemble prediction model of SPEs. The ensemble prediction model incorporating the complementary information of solar flares and CMEs achieves better performance than each base prediction model taken separately.展开更多
The unified symmetry of a nonholonomic system of non-Chetaev's type with variable mass in event space is studied. The differential equations of motion of the system are given. Then the definition and the criterion of...The unified symmetry of a nonholonomic system of non-Chetaev's type with variable mass in event space is studied. The differential equations of motion of the system are given. Then the definition and the criterion of the unified symmetry for the system are obtained. Finally, the Noether conserved quantity, the Hojman conserved quantity, and a new type of conserved quantity are deduced from the unified symmetry of the nonholonomic system of non-Chetaev's type with variable mass in event space at one time. An example is given to illustrate the application of the results.展开更多
There is an increasing number of "mass events" in China's Mainland.My study extends the current studies to the context of China and tries to examine the potential impacts of climate changes on human conf...There is an increasing number of "mass events" in China's Mainland.My study extends the current studies to the context of China and tries to examine the potential impacts of climate changes on human conflias in China.The results suggest a strong linkage between the deviation of monthly mean temperature from the historical mean and the number of mass events in a province.If the current trend of warming persists,in the next 6-8 decades,the number of mass events in China will increase by over 8.8%.展开更多
The provision of medical care during major events is a significant issue,both for organisers and for the emergency services that support these events.Nevertheless,research on this matter is limited.This research attem...The provision of medical care during major events is a significant issue,both for organisers and for the emergency services that support these events.Nevertheless,research on this matter is limited.This research attempts to approach the matter through the study of fairs and events held at TIF-HELEXPO during the 2015-2018 period(1,774 medical incidents).Result analysis indicated that there are no significant differentiations in the number of medical incidents with regard to gender,age,country of origin,status,type of illness,and outcome of incidents;however,there were differentiations in the frequency of incidents,with regards to the character of the fair and the event.展开更多
Background: Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB) is a widely used modality for acquiring various target samples, but its efficacy in gallbladder masses is unknown. The aim of this retrospective stu...Background: Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB) is a widely used modality for acquiring various target samples, but its efficacy in gallbladder masses is unknown. The aim of this retrospective study was to evaluate the efficacy and safety of EUS-FNB in patients with gallbladder masses. Methods: The study samples were composed of patients from March 2015 to July 2019 who needed to identify the nature of gallbladder masses through EUS-FNB. The outcomes of this study were the adequacy of specimens, diagnostic yields, technical feasibility, and adverse events of the EUS-FNB in gallbladder masses. Results: A total of 27 consecutive patients with a median age of 58 years were included in this study. The 22-gauge FNB needle was feasible in all lesions. The median follow-up period of the patients was 294 days. The specimens sufficient for diagnosis account for 89%(24/27) and 93%(25/27) in cytology and histology, respectively. The overall diagnostic yields for malignancy showed the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 95.45% [95% confidence interval(CI): 75.12%-99.76%], 100%(95% CI: 46.29%-10 0%), 10 0%(95% CI: 80.76%-100%), 83.33%(95% CI: 36.48%-99.12%), and 96.30%(95% CI: 80.20%-99.99%), respectively. The subgroup analysis revealed that FNB could obtain sufficient specimens and high diagnostic yields in both gallbladder mass < 20.5 mm group and ≥20.5 mm group. One patient experienced mild abdominal pain after the procedure and recovered within one day. Conclusions: EUS-FNB is a reasonable diagnostic tool for the pretreatment diagnosis of patients with gallbladder masses, especially for patients who may miss the opportunity of surgery and need sufficient specimens to identify the pathological type so as to determine chemotherapy regimens. Further largescale studies are needed to confirm our conclusion.展开更多
Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current...Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications.展开更多
基金Supported by Special Project for Improving Science and Technology Innovation Ability of Army Medical University,No.2022XLC09.
文摘BACKGROUND The incidence of chronic kidney disease among patients with diabetes mellitus(DM)remains a global concern.Long-term obesity is known to possibly influence the development of type 2 diabetes mellitus.However,no previous meta-analysis has assessed the effects of body mass index(BMI)on adverse kidney events in patients with DM.AIM To determine the impact of BMI on adverse kidney events in patients with DM.METHODS A systematic literature search was performed on the PubMed,ISI Web of Science,Scopus,Ovid,Google Scholar,EMBASE,and BMJ databases.We included trials with the following characteristics:(1)Type of study:Prospective,retrospective,randomized,and non-randomized in design;(2)participants:Restricted to patients with DM aged≥18 years;(3)intervention:No intervention;and(4)kidney adverse events:Onset of diabetic kidney disease[estimated glomerular filtration rate(eGFR)of<60 mL/min/1.73 m2 and/or microalbuminuria value of≥30 mg/g Cr],serum creatinine increase of more than double the baseline or end-stage renal disease(eGFR<15 mL/min/1.73 m2 or dialysis),or death.RESULTS Overall,11 studies involving 801 patients with DM were included.High BMI(≥25 kg/m2)was significantly associated with higher blood pressure(BP)[systolic BP by 0.20,95%confidence interval(CI):0.15–0.25,P<0.00001;diastolic BP by 0.21 mmHg,95%CI:0.04–0.37,P=0.010],serum albumin,triglycerides[standard mean difference(SMD)=0.35,95%CI:0.29–0.41,P<0.00001],low-density lipoprotein(SMD=0.12,95%CI:0.04–0.20,P=0.030),and lower high-density lipoprotein(SMD=–0.36,95%CI:–0.51 to–0.21,P<0.00001)in patients with DM compared with those with low BMIs(<25 kg/m2).Our analysis showed that high BMI was associated with a higher risk ratio of adverse kidney events than low BMI(RR:1.22,95%CI:1.01–1.43,P=0.036).CONCLUSION The present analysis suggested that high BMI was a risk factor for adverse kidney events in patients with DM.
文摘Shaw's method used to correlate 40 sections across the Permo-Triassic boundary in South China is applied in the paper. Two steps are adopted to get an Integral Composite Section (ICS) by synthesizing these data : First , South China is divided into five areas and composite section developed for each area . Then the second step . the Changxing composite section is regarded as a composite standard (CSRS) while the ICS is produced by matching the CSRS with composite sections of the other areas. Three biozones in the Changxingian and two biozones in the Griesbachian can be discerned on the basis of computing Z values in the ICS. These biozones are marked by the Z values which quantitatively represent their time ranges ; therefore , they may increase accuracy of stratigraphic time correlation . The mass extinction at the end of the Permian is an abrupt event that is supported by the relative rate of extinction near the P/T boundary . About 90% of invertebrate species died out by the end of the Permian . The duration of the mass extinction is rather short ,approximately 0.018Ma .
基金supported by the State Key Basic Research Development Program (2004CB418300 and 2009CB421504)the National Natural Science Foundation of China under Grant Nos.40633016 and 40830958
文摘The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.
基金supported by grants from the National Key R&D Program of China(Grant No.2019YFC1510201)National Natural Science Foundation of China(Grant Nos.42075052 and 42088101)the Natural Science Foundation of Jiangsu Province(Grants No.BK20211288).
文摘Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Niña to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.
文摘Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or sliding in roof layers above the exploited panel in coal seam, sometime in a distance from actual exploitation. Sliding, as a rule occurs in fault zone and tremors in it are expected, but monolithic layer rupture is very hard to predict. In a past few years a practice of analyzing state of deformation in high energy seismic tremors zones has been employed. It let gathering experience thanks to witch determination of dangerous shape of reformatted roof is possible. In the paper some typical forms of roof rocks deformations leading to seismic tremor occurrence will be presented. In general these are various types of multidirectional rock layers bending. Real examples of seismic events and rock bursts will be shown.
基金jointly supported by the National Natural Science Foundation of China [grant number 41375064 and41675086]the National Key Technology Research and Development Program of the Ministry of Science and Technology of China [grant number 2015BAC03B03]
文摘This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR events with zonal extent exceeding 90°of longitude on the peak day are identified.Using self-organizing map(SOM),the LSTRs are classified into five clusters that are characterized by different spatial distributions and orientations.The leading two clusters are closely associated with extensive and persistent cold events over different places.Considering the first cluster,LSTRs extend from the Ural Mountains to Northeast Asia and are favorable for the amplification and southeastward extension of the Siberian high.Therefore,this cluster is closely associated with the occurrence of extensive and persistent cold events in china.In comparison with the first cluster,the LSTRs of second group are situated to the west,with starting points from the Kola Peninsula,and cause extensive and persistent cold events over Eastern Europe,central Asia,and central Siberia.The results suggest that the vertical coupling between LSTRs and the corresponding anomalous sea level pressure is crucial for the persistent cold temperature events associated with the leading two SOM clusters.
基金supported by the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences, the National Basic Research Program of China (973 Program, Grant No. 2011CB811406)the National Natural Science Foundation of China (Grant Nos. 10733020, 10921303, 11003026 and 11078010)
文摘An ensemble prediction model of solar proton events (SPEs), combining the information of solar flares and coronal mass ejections (CMEs), is built. In this model, solar flares are parameterized by the peak flux, the duration and the longitude. In addition, CMEs are parameterized by the width, the speed and the measurement position angle. The importance of each parameter for the occurrence of SPEs is estimated by the information gain ratio. We find that the CME width and speed are more informative than the flare’s peak flux and duration. As the physical mechanism of SPEs is not very clear, a hidden naive Bayes approach, which is a probability-based calculation method from the field of machine learning, is used to build the prediction model from the observational data. As is known, SPEs originate from solar flares and/or shock waves associated with CMEs. Hence, we first build two base prediction models using the properties of solar flares and CMEs, respectively. Then the outputs of these models are combined to generate the ensemble prediction model of SPEs. The ensemble prediction model incorporating the complementary information of solar flares and CMEs achieves better performance than each base prediction model taken separately.
文摘The unified symmetry of a nonholonomic system of non-Chetaev's type with variable mass in event space is studied. The differential equations of motion of the system are given. Then the definition and the criterion of the unified symmetry for the system are obtained. Finally, the Noether conserved quantity, the Hojman conserved quantity, and a new type of conserved quantity are deduced from the unified symmetry of the nonholonomic system of non-Chetaev's type with variable mass in event space at one time. An example is given to illustrate the application of the results.
文摘There is an increasing number of "mass events" in China's Mainland.My study extends the current studies to the context of China and tries to examine the potential impacts of climate changes on human conflias in China.The results suggest a strong linkage between the deviation of monthly mean temperature from the historical mean and the number of mass events in a province.If the current trend of warming persists,in the next 6-8 decades,the number of mass events in China will increase by over 8.8%.
文摘The provision of medical care during major events is a significant issue,both for organisers and for the emergency services that support these events.Nevertheless,research on this matter is limited.This research attempts to approach the matter through the study of fairs and events held at TIF-HELEXPO during the 2015-2018 period(1,774 medical incidents).Result analysis indicated that there are no significant differentiations in the number of medical incidents with regard to gender,age,country of origin,status,type of illness,and outcome of incidents;however,there were differentiations in the frequency of incidents,with regards to the character of the fair and the event.
基金supported by a grant from the National Ma-jor Diseases Multidisciplinary Cooperative Diagnosis and Treat-ment Project-Gastrointestinal Cancer MDT Diagnosis and Treat-ment Project
文摘Background: Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB) is a widely used modality for acquiring various target samples, but its efficacy in gallbladder masses is unknown. The aim of this retrospective study was to evaluate the efficacy and safety of EUS-FNB in patients with gallbladder masses. Methods: The study samples were composed of patients from March 2015 to July 2019 who needed to identify the nature of gallbladder masses through EUS-FNB. The outcomes of this study were the adequacy of specimens, diagnostic yields, technical feasibility, and adverse events of the EUS-FNB in gallbladder masses. Results: A total of 27 consecutive patients with a median age of 58 years were included in this study. The 22-gauge FNB needle was feasible in all lesions. The median follow-up period of the patients was 294 days. The specimens sufficient for diagnosis account for 89%(24/27) and 93%(25/27) in cytology and histology, respectively. The overall diagnostic yields for malignancy showed the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 95.45% [95% confidence interval(CI): 75.12%-99.76%], 100%(95% CI: 46.29%-10 0%), 10 0%(95% CI: 80.76%-100%), 83.33%(95% CI: 36.48%-99.12%), and 96.30%(95% CI: 80.20%-99.99%), respectively. The subgroup analysis revealed that FNB could obtain sufficient specimens and high diagnostic yields in both gallbladder mass < 20.5 mm group and ≥20.5 mm group. One patient experienced mild abdominal pain after the procedure and recovered within one day. Conclusions: EUS-FNB is a reasonable diagnostic tool for the pretreatment diagnosis of patients with gallbladder masses, especially for patients who may miss the opportunity of surgery and need sufficient specimens to identify the pathological type so as to determine chemotherapy regimens. Further largescale studies are needed to confirm our conclusion.
基金We acknowledge the funding support from National Natural Science Foundation of China(Grant No.42077263).
文摘Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications.