期刊文献+
共找到995篇文章
< 1 2 50 >
每页显示 20 50 100
GNN Representation Learning and Multi-Objective Variable Neighborhood Search Algorithm for Wind Farm Layout Optimization
1
作者 Yingchao Li JianbinWang HaibinWang 《Energy Engineering》 EI 2024年第4期1049-1065,共17页
With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou... With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm. 展开更多
关键词 GNN representation learning variable neighborhood search multi-objective optimization wind farm layout point of common coupling
下载PDF
Evolutionary Neural Architecture Search and Its Applications in Healthcare 被引量:1
2
作者 Xin Liu Jie Li +3 位作者 Jianwei Zhao Bin Cao Rongge Yan Zhihan Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期143-185,共43页
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ... Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications. 展开更多
关键词 Neural architecture search evolutionary computation large-scale multiobjective optimization distributed parallelism healthcare
下载PDF
Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism 被引量:54
3
作者 FAN Chengli FU Qiang +1 位作者 LONG Guangzheng XING Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期405-414,共10页
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie... Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC. 展开更多
关键词 artificial bee colony(ABC) hybrid artificial bee colony(HABC) variable neighborhood search factor memory mechanism
下载PDF
Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 被引量:7
4
作者 Pei Wang Gerhard Reinelt Yuejin Tan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期208-215,共8页
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no... A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis. 展开更多
关键词 non-identical parallel machine scheduling problem with multiple time windows (NPMSPMTW) oversubscribed self- adaptive large neighborhood search (SALNS) machine learning.
下载PDF
Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing 被引量:1
5
作者 郭力争 王永皎 +2 位作者 赵曙光 沈士根 姜长元 《Journal of Donghua University(English Edition)》 EI CAS 2013年第2期145-152,共8页
In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction... In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient. 展开更多
关键词 cloud computing particle swarm optimization PSO) task scheduling variable neighborhood search VNS)
下载PDF
A Multiple-Neighborhood-Based Parallel Composite Local Search Algorithm for Timetable Problem
6
作者 颜鹤 郁松年 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期301-308,共8页
This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can... This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms. 展开更多
关键词 multiple neighborhoods PARALLEL composite local search algorithm timetable problem.
下载PDF
Local Search Algorithm with Hybrid Neighborhood and Its Application to Job Shop Scheduling Problem
7
作者 黄文奇 曾立平 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期95-100,共6页
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while sea... A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm. 展开更多
关键词 Job shop scheduling Local search Hybrid neighborhood Off-trap strategy
下载PDF
多舱共配绿色车辆路径问题的改进变邻域搜索算法 被引量:1
8
作者 肖友刚 曹健 +2 位作者 陈婉茹 张得志 李双艳 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第4期751-762,共12页
针对社区团购前置仓配送场景中“多中心、高时效、多品类、高排放”难题,本文提出多车场带时间窗的绿色多舱车车辆路径问题(MDMCG-VRPTW),构建混合整数线性规划模型,并设计改进的变邻域搜索算法(IVNS)实现求解.采用两阶段混合算法构造... 针对社区团购前置仓配送场景中“多中心、高时效、多品类、高排放”难题,本文提出多车场带时间窗的绿色多舱车车辆路径问题(MDMCG-VRPTW),构建混合整数线性规划模型,并设计改进的变邻域搜索算法(IVNS)实现求解.采用两阶段混合算法构造高质量初始解.提出均衡抖动策略以充分探索解空间,引入粒度机制以提升局部搜索阶段的寻优效率.标准算例测试结果验证了两阶段初始解构造算法和IVNS算法的有效性.仿真实验结果表明,模型与算法能够有效求解MDMCGVRPTW,且改进策略提高了算法的求解效率和全局搜索能力.最后,基于对配送策略和时效性的敏感性分析,为相关配送企业降本增效提供更多决策依据. 展开更多
关键词 多舱共配 绿色车辆路径 均衡抖动 粒度局部搜索 改进变邻域搜索算法
下载PDF
基于改进蚁群算法的外卖配送路径规划研究 被引量:1
9
作者 唐传茵 章明理 +2 位作者 李静红 苑莹 卫美荣 《南京信息工程大学学报》 CAS 北大核心 2024年第2期145-154,共10页
从外卖配送员角度出发提出一种改进蚁群算法(Improved Ant Colony Optimization,IACO),在此基础上进行外卖配送路径规划研究.首先通过蚁群算法(Ant Colony Optimization,ACO)求解得到初始规划路径,然后通过大规模邻域搜索算法(Large Nei... 从外卖配送员角度出发提出一种改进蚁群算法(Improved Ant Colony Optimization,IACO),在此基础上进行外卖配送路径规划研究.首先通过蚁群算法(Ant Colony Optimization,ACO)求解得到初始规划路径,然后通过大规模邻域搜索算法(Large Neighborhood Search,LNS)优化初始规划路径,通过将ACO和LNS算法结合,提高求解质量.为了验证方法的有效性,对外卖配送过程进行仿真,并且选用不同订单数量场景进行对照分析.根据最优配送方案路线图和目标罚函数的最优值可以得出,IACO算法是有效的,且可以提高外卖配送员外卖配送的效率.IACO算法不但能够提升配送的智能化水平,还从外卖配送员的角度提出一种更为人性化的配送方法,支持网络互联外卖平台派送系统的可持续化发展. 展开更多
关键词 改进蚁群算法 大规模邻域搜索算法 外卖配送 配送方案
下载PDF
Vehicle routing optimization algorithm based on time windows and dynamic demand
10
作者 LI Jun DUAN Yurong +1 位作者 ZHANG Weiwei ZHU Liyuan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期369-378,共10页
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,... To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem. 展开更多
关键词 vehicle routing problem dynamic demand genetic algorithm large-scale neighborhood search time windows
下载PDF
考虑机会充电与行程时间可靠性的区域多车型电动公交调度优化
11
作者 姚恩建 王鑫 +2 位作者 刘莎莎 杨扬 李成 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第4期151-165,187,共16页
为提高电动公交系统运营效率,降低运营成本,本文提出一种考虑机会充电和行程时间可靠性的电动公交调度优化方法。首先,基于区域调度场景,提出在线路始末站配备快速充电桩,利用车次接续时间进行机会充电的策略;然后,考虑行程时间的随机波... 为提高电动公交系统运营效率,降低运营成本,本文提出一种考虑机会充电和行程时间可靠性的电动公交调度优化方法。首先,基于区域调度场景,提出在线路始末站配备快速充电桩,利用车次接续时间进行机会充电的策略;然后,考虑行程时间的随机波动,以表征特定可靠性的预留行程时间作为模型输入生成调度方案,同时,将发车延误成本纳入目标函数中,综合考虑公交企业从规划到运营阶段的整体效益,构建以总成本最小为目标的区域多车型电动公交调度优化模型,针对模型特点,设计自适应大邻域搜索算法进行求解;最后,以北京市大兴区4条公交线路为例,验证模型和算法的有效性。结果表明:基于本文方法得到的最优调度方案相较于传统单线路单车型调度方案,能使企业日均总成本下降37.93%,平均每辆车的发车延误时长减少5.63 min,说明本文所提方法能有效降低企业成本,提升公交系统可靠性。相较于不考虑机会充电和行程时间可靠性的区域多车型运营模式,本文最优方案能使总成本下降28.67%。此外,通过灵敏度分析,建议公交企业以240 kW的充电功率进行快速充电资源的配置,以90%的行程时间可靠性进行电动公交调度方案的编制。 展开更多
关键词 城市交通 区域调度 自适应大邻域搜索 电动公交 机会充电 行程时间可靠性
下载PDF
基于多元信息引导的人工蜂群算法
12
作者 周新宇 刘颖 +1 位作者 吴艳林 郭京蕾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1349-1363,共15页
利用优秀个体增强解搜索方程的开采能力是改进人工蜂群算法的一种主流思路.然而,现有相关工作往往仅以适应度信息作为评价个体的唯一标准,易导致算法出现早熟收敛等问题.本文提出一种多元信息引导的人工蜂群算法,分别设计了基于适应度... 利用优秀个体增强解搜索方程的开采能力是改进人工蜂群算法的一种主流思路.然而,现有相关工作往往仅以适应度信息作为评价个体的唯一标准,易导致算法出现早熟收敛等问题.本文提出一种多元信息引导的人工蜂群算法,分别设计了基于适应度、位置以及相似度信息的3种解搜索方程,并在雇佣蜂阶段和观察蜂阶段采用了不同的使用方式.同时,为保存侦察蜂阶段的搜索经验,采用一种微调后的邻域搜索机制用于处理被放弃蜜源.在CEC2013测试集和一个实际优化问题上进行了大量实验验证,与6种衍生算法和5种知名的相关改进人工蜂群算法进行了对比,结果表明本文算法性能竞争优势明显,在结果精度和收敛速度上均有更好表现. 展开更多
关键词 人工蜂群算法 优秀个体 多元信息 解搜索方程 邻域搜索
下载PDF
求解燃气轮机制造车间调度的混合和声搜索算法
13
作者 李明辉 石宇强 +1 位作者 石小秋 李佳 《工业工程》 2024年第3期106-113,共8页
燃气轮机生产属于典型的离散型制造,其多品种小批量的生产特点给车间作业调度带来挑战,导致企业生产效率低下,不能满足产品交货期。因和声搜索算法结构简单易操作,常用于解决此类作业车间调度问题。然而传统和声搜索算法收敛速度较慢,... 燃气轮机生产属于典型的离散型制造,其多品种小批量的生产特点给车间作业调度带来挑战,导致企业生产效率低下,不能满足产品交货期。因和声搜索算法结构简单易操作,常用于解决此类作业车间调度问题。然而传统和声搜索算法收敛速度较慢,易陷入局部最优。本文构建以最小化最大完工时间为目标的燃气轮机制造车间调度数学模型,提出一种离散型改进多种群混合和声搜索算法进行求解。结合和声搜索算法与变邻域搜索算法的优点,采用基于工序的编码方式进行编码,在种群更新部分引入模拟退火的Metropolis接受准则,提高种群多样性;提出自适应的记忆库保留概率和音调调节率来调节参数,以提高算法的全局寻优能力;加入变邻域搜索以提高算法的收敛速度。通过性能测试及实例验证表明,相较于已有算法,所提算法具有更好的性能。 展开更多
关键词 燃气轮机制造车间调度 和声搜索算法(HS) 变邻域搜索(VNS) METROPOLIS准则
下载PDF
改进文化基因算法求解双资源约束柔性作业车间调度问题
14
作者 王玉芳 陈凡 +1 位作者 姚彬彬 曾亚志 《控制工程》 CSCD 北大核心 2024年第6期981-994,共14页
针对具有机器和工人的双资源约束柔性作业车间调度问题,以最小化最大完工时间为目标构建调度模型,并设计一种改进文化基因算法对其进行求解。由于该调度问题需要同时考虑工序排序、机器选择及工人选择3个子问题,故采用三层序列编码。考... 针对具有机器和工人的双资源约束柔性作业车间调度问题,以最小化最大完工时间为目标构建调度模型,并设计一种改进文化基因算法对其进行求解。由于该调度问题需要同时考虑工序排序、机器选择及工人选择3个子问题,故采用三层序列编码。考虑传统解码方式存在收敛速度慢、收敛不完全的弊端,设计一种扩展型插入式主动解码方式,以提高算法的收敛速度;针对进化算法易陷入局部最优的缺陷,设计一种基于负载平衡的机器和工人再分配算子,增强算法的全局搜索能力,对种群中的优秀个体采用改进变邻域搜索以提高算法的局部寻优能力。最后,利用仿真算例及航空设备生产实例进行实验,验证所提算法求解双资源约束调度问题的有效性。 展开更多
关键词 柔性作业车间调度 双资源约束 文化基因算法 负载平衡 变邻域搜索
下载PDF
基于混合算法的飞机部件装配静态调度方法研究 被引量:1
15
作者 梅中义 付豪 《机械工程与自动化》 2024年第3期7-10,共4页
飞机部件装配生产工艺流程复杂、生产周期长,如何制定高效的生产调度计划是急需解决的问题。分析了飞机部件装配的工艺流程,建立了飞机部件装配调度的约束条件,包括装配工序的先后约束和装配工装占用的约束,建立了飞机部件装配调度的目... 飞机部件装配生产工艺流程复杂、生产周期长,如何制定高效的生产调度计划是急需解决的问题。分析了飞机部件装配的工艺流程,建立了飞机部件装配调度的约束条件,包括装配工序的先后约束和装配工装占用的约束,建立了飞机部件装配调度的目标函数,包括最小化拖期惩罚和最小化最大完工周期,对飞机部件装配调度问题进行了合理的假设和抽象,并建立了飞机部件装配调度模型。针对飞机部件装配静态调度问题,将粒子群算法和变邻域搜索算法进行了有效结合,设计了粒子群-变邻域搜索混合算法,并采用实例验证了该算法的有效性。 展开更多
关键词 飞机部件装配 调度 粒子群算法 变邻域搜索 静态调度
下载PDF
混合遗传变邻域搜索算法求解柔性车间调度问题
16
作者 周伟 孙瑜 +1 位作者 李西兴 王林琳 《计算机工程与设计》 北大核心 2024年第7期2041-2049,共9页
针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;... 针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;设计两种邻域结构增强算法的局部搜索能力;提出一种基于动态交叉变异概率的优化算法流程提高求解效率。运用提出的算法求解基准实例与实际问题测试,验证了算法的有效性。 展开更多
关键词 柔性作业车间调度 加工成本 遗传算法 变邻域搜索 混合算法 动态概率 优化
下载PDF
改进文化基因算法求解带午休时间的多级别家庭护理路径和调度问题
17
作者 王付宇 施琦 李艳 《南阳理工学院学报》 2024年第4期6-13,共8页
针对护理员的技能等级以及午休时间等约束,以总运营成本最小为目标建立模型,设计混合初始化策略以及自适应邻域搜索结构改进文化基因算法,并采用田口方法调整算法参数。算例测试结果验证了算法的有效性;对比随机的邻域搜索方式,结果证... 针对护理员的技能等级以及午休时间等约束,以总运营成本最小为目标建立模型,设计混合初始化策略以及自适应邻域搜索结构改进文化基因算法,并采用田口方法调整算法参数。算例测试结果验证了算法的有效性;对比随机的邻域搜索方式,结果证明自适应邻域搜索提升了算法的收敛性;Friedman及后续检验结果则表明该算法优于遗传算法和禁忌搜索算法。针对午休时长和多级别护理员结构的灵敏度分析则分别证明合适的午休时长对降低成本的作用以及多级别护理员的引入对问题的重要性。 展开更多
关键词 家庭护理 午休时间 文化基因算法 自适应邻域搜索 田口方法 Friedman检验
下载PDF
集配一体化需求背景下选址路径集成问题算法
18
作者 程涛 李美熙 李佳俐 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第4期346-354,共9页
为做好集配一体化背景下物流网络选址-路径规划设计,用大规模邻域搜索算法的破坏、重组策略代替传统混合自适应遗传算法中的交叉、变异过程,实现算法的优化设计.通过模拟算例分析可知,优化后的算法能够有效克服传统算法在运算过程中出... 为做好集配一体化背景下物流网络选址-路径规划设计,用大规模邻域搜索算法的破坏、重组策略代替传统混合自适应遗传算法中的交叉、变异过程,实现算法的优化设计.通过模拟算例分析可知,优化后的算法能够有效克服传统算法在运算过程中出现的早熟及稳定性差等问题,在一定程度上提升获取更优解的概率,提高客户满意度.利用已知标杆数据对算法进行有效性检验.计算结果表明:优化后的算法各项指标表现良好,对于部分数据的计算结果优于其他3个已有算法,与已知最优解基本保持一致,进一步验证了优化算法的科学性和有效性. 展开更多
关键词 集配一体化 邻域搜索 选址路径
下载PDF
基于六向搜索A^(*)算法的移动机器人路径规划
19
作者 刘建娟 李海博 +2 位作者 刘忠璞 姬淼鑫 许强伟 《组合机床与自动化加工技术》 北大核心 2024年第9期6-10,共5页
针对移动机器人利用传统A^(*)算法在复杂环境中进行路径规划时,存在着扩展节点数多导致的搜索效率低,以及路径平滑性不足等问题,提出了一种基于六向搜索的A^(*)算法。首先,在传统A^(*)算法启发函数的基础上利用曼哈顿距离进行加权,减少... 针对移动机器人利用传统A^(*)算法在复杂环境中进行路径规划时,存在着扩展节点数多导致的搜索效率低,以及路径平滑性不足等问题,提出了一种基于六向搜索的A^(*)算法。首先,在传统A^(*)算法启发函数的基础上利用曼哈顿距离进行加权,减少了算法的搜索时间和扩展节点数;其次,对传统A^(*)算法搜索策略进行改进,提出一种六向搜索策略,进一步减少算法扩展节点数,并同时提升路径平滑性;最后,利用路径平滑策略来对规划出来的路径进行平滑处理。实验结果表明,基于六向搜索的A^(*)算法在不同地图规模的仿真环境中都能获得较高的搜索效率,且扩展节点数更少、转折角度更小、更有利于移动机器人的路径规划。 展开更多
关键词 路径规划 改进A~*算法 移动机器人 曼哈顿距离 搜索邻域
下载PDF
工位数固定的U型拆卸线部分拆卸平衡问题
20
作者 吴秀丽 张兴宇 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1079-1088,共10页
为提高工位数固定的U型拆卸线拆卸效率,减少有害部件对操作人员的潜在威胁,针对高价值零部件和有害零部件的拆卸需求,本文提出了工位数固定的U型拆卸线部分拆卸平衡问题,建立了以最小化节拍时间、高危工位数目和负载均衡为目标的优化模... 为提高工位数固定的U型拆卸线拆卸效率,减少有害部件对操作人员的潜在威胁,针对高价值零部件和有害零部件的拆卸需求,本文提出了工位数固定的U型拆卸线部分拆卸平衡问题,建立了以最小化节拍时间、高危工位数目和负载均衡为目标的优化模型,并设计了改进的变邻域搜索算法进行求解.在编码过程中提出一种基于零部件释放位置的选择策略,以减少前继零部件拆卸顺序对编码的影响;提出最小偏差二分法,有效减少解码的迭代次数;提出瓶颈挤压局部搜索策略,用以优化节拍时间和均衡负载指标.通过与其他算法对比,结果表明改进的变邻域搜索算法求解具有优越性,并且可实现对工位数固定的U型拆卸线部分拆卸平衡问题的高效求解. 展开更多
关键词 拆卸线平衡 U型拆卸线 变邻域搜索算法 工位数固定 瓶颈挤压局部搜索策略
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部