In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\ve...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2{\rm d}x\right)\Delta u+\lambda u=g(u)~\hbox{in}~\mathbb{R}^N,u\in H^1(\mathbb{R}^N),N\geq 1,satisfying the normalization constraint\int_{\mathbb{R}^N}u^2{\rm d}x=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching a...With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.展开更多
In this paper,we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrodinger equation with aμ-Laplacian term(BNLS).Such BNLS models the propagation of intense laser beams in a bu...In this paper,we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrodinger equation with aμ-Laplacian term(BNLS).Such BNLS models the propagation of intense laser beams in a bulk medium with a second-order dispersion term.Denoting by Qpthe ground state for the BNLS withμ=0,we prove that in the mass-subcritical regime p∈(1,1+8/d),there exist orbit ally stable ground state solutions for the BNLS when p∈(-λ0,∞)for someλ0=λ0(p,d,‖Qp‖L2)>0.Moreover,in the mass-critical case p=1+8/d,we prove the orbital stability on a certain mass level below‖Q*‖L2,provided thatμ∈(-λ1,0),where■and Q*=Q1+8/d.The proofs are mainly based on the profile decomposition and a sharp Gagliardo-Nirenberg type inequality.Our treatment allows us to fill the gap concerning the existence of the ground states for the BNLS when p is negative and p∈(1,1+8/d].展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparis...On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.展开更多
The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or ...The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.展开更多
By using the Smith normal form of polynomial matrix and algebraic methods, this paper discusses the solvability for the linear matrix equation A iXB i=C over a field, and obtains the explicit formulas of general sol...By using the Smith normal form of polynomial matrix and algebraic methods, this paper discusses the solvability for the linear matrix equation A iXB i=C over a field, and obtains the explicit formulas of general solution or unique solution.展开更多
In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞...In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.展开更多
In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originate...In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originated from the normal distribution. While the second algorithm applies the well-known Darboux Theory. These two algorithms draw the same geodesic equation. Finally, we applied Baltzer R.’s finding to compute the Gaussian Curvature.展开更多
The authors announce a newly-proved theorem of theirs. This theorem is of principal significance to numerical computation of operator equations of the first kind.
In each equation of simultaneous Equation model, the exogenous variables need to satisfy all the basic assumptions of linear regression model and be non-negative especially in econometric studies. This study examines ...In each equation of simultaneous Equation model, the exogenous variables need to satisfy all the basic assumptions of linear regression model and be non-negative especially in econometric studies. This study examines the performances of the Ordinary Least Square (OLS), Two Stage Least Square (2SLS), Three Stage Least Square (3SLS) and Full Information Maximum Likelihood (FIML) Estimators of simultaneous equation model with both normally and uniformly distributed exogenous variables under different identification status of simultaneous equation model when there is no correlation of any form in the model. Four structural equation models were formed such that the first and third are exact identified while the second and fourth are over identified equations. Monte Carlo experiments conducted 5000 times at different levels of sample size (n = 10, 20, 30, 50, 100, 250 and 500) were used as criteria to compare the estimators. Result shows that OLS estimator is best in the exact identified equation except with normally distributed exogenous variables when . At these instances, 2SLS estimator is best. In over identified equations, the 2SLS estimator is best except with normally distributed exogenous variables when the sample size is small and large, and;and with uniformly distributed exogenous variables when n is very large, , the best estimator is either OLS or FIML or 3SLS.展开更多
We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation l...We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation language M ATHEMATICA,and extending the matrix representation method.This method can be used to calculate the focal value of any high order terms.This method has been verified by an example.The advantage of this method is simple and more readily applicable.the result is directly obtained by substitution.展开更多
We are engaged in solving two difficult problems in adaptive control of the large-scale time-variant aerospace system. One is parameter identification of time-variant continuous-time state-space modei; the other is ho...We are engaged in solving two difficult problems in adaptive control of the large-scale time-variant aerospace system. One is parameter identification of time-variant continuous-time state-space modei; the other is how to solve algebraic Riccati equation (ARE) of large order efficiently. In our approach, two neural networks are employed to independently solve both the system identification problem and the ARE associated with the optimal control problem. Thus the identification and the control computation are combined in closed-loop, adaptive, real-time control system . The advantage of this approach is that the neural networks converge to their solutions very quickly and simultaneously.展开更多
This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxia...This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxial compression,and indirect tensile.The Desai yield surface and fatigue path were proposed.And a normalized fatigue characteristics model of the mixture was established.The following conclusions were obtained.With the increases in the loading rate,the strength of the asphalt mixture increased.As the temperature increases,the strength of the mixture is reduced.At various temperatures and rates,the strength forms a closed curved surface.The Desai strength yield surface was established,which forms a closed curved surface.When the loading rate and temperature are below a certain critical line,the asphalt mixture will not undergo strength damage.At a fixed stress state,the fatigue damage path of the mixture was determined.The stress ratio was determined considering the influence of the loading rate.In this way,a normalized model can be described to express the asphalt mixture fatigue properties at various temperatures and stress levels.For the asphalt mixture in an indirect tensile state,the normalized fatigue equation parameter is 4.09.This model is more suitable for reflecting the viscous-elastic behavior of the mixtures than the fatigue equation determined by the notional stress ratio.展开更多
We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi...We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.展开更多
Prestack reverse time migration(PSTM) is a common imaging method; however low-frequency noises reduce the structural imaging precision. Thus, the suppression of migration noises must be considered. The generation me...Prestack reverse time migration(PSTM) is a common imaging method; however low-frequency noises reduce the structural imaging precision. Thus, the suppression of migration noises must be considered. The generation mechanism of low-frequency noises is analyzed and the up-, down-, left-, and right-going waves are separated using the Poynting vector of the acoustic wave equation. The computational complexity and memory capacitance of the proposed method are far smaller than that required when using the conventional separation algorithm of 2D Fourier transform. The normalized wavefield separation crosscorrelation imaging condition is used to suppress low-frequency noises in reverse time migration and improve the imaging precision. Numerical experiments using the Marmousi model are performed and the results show that the up-, down-, left-, and right-going waves are well separated in the continuation of the wavefield using the Poynting vector. We compared the imaging results with the conventional method, Laplacian filtering, and wavefield separation with the 2D Fourier transform. The comparison shows that the migration noises are well suppressed using the normalized wavefield separation cross-correlation imaging condition and higher precision imaging results are obtained.展开更多
In this paper,we investigate the following p-Kirchhoff equation{∫R^(N)|u|^(2)dx=ρ,(a+b)∫RN(|Δu}^(p)+|u|^(p))dx)(-Δpu+|u|^(p-2u)=|u|^(s-2)u+μu,x∈R^(N),where a>0,b≥0,p>0 are constants,constants,p*=N-P/Np i...In this paper,we investigate the following p-Kirchhoff equation{∫R^(N)|u|^(2)dx=ρ,(a+b)∫RN(|Δu}^(p)+|u|^(p))dx)(-Δpu+|u|^(p-2u)=|u|^(s-2)u+μu,x∈R^(N),where a>0,b≥0,p>0 are constants,constants,p*=N-P/Np is the critical Sobolev exponent,μis a Lagrange multiplier,-Δpu=-div(|Δu|_(p-2)u),2<p<N2p,μ∈R,and s∈(2N/N+2p-2,p*).We demonstratethat he p-Kirchhoff equation has a normalized solution using the mountain pass lemma and some analysis techniques.展开更多
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈ℝ×H^(1)(ℝ^(N))to the general Kirchhoff problem-M\left(\int_{\mathbb{R}^N}\vert\nabla u\vert^2{\rm d}x\right)\Delta u+\lambda u=g(u)~\hbox{in}~\mathbb{R}^N,u\in H^1(\mathbb{R}^N),N\geq 1,satisfying the normalization constraint\int_{\mathbb{R}^N}u^2{\rm d}x=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
文摘With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.
基金partially supported by the National Natural Science Foundation of China(11501137)partially supported by the National Natural Science Foundation of China(11501395,12071323)the Guangdong Basic and Applied Basic Research Foundation(2016A030310258,2020A1515011019)。
文摘In this paper,we study the ground state standing wave solutions for the focusing bi-harmonic nonlinear Schrodinger equation with aμ-Laplacian term(BNLS).Such BNLS models the propagation of intense laser beams in a bulk medium with a second-order dispersion term.Denoting by Qpthe ground state for the BNLS withμ=0,we prove that in the mass-subcritical regime p∈(1,1+8/d),there exist orbit ally stable ground state solutions for the BNLS when p∈(-λ0,∞)for someλ0=λ0(p,d,‖Qp‖L2)>0.Moreover,in the mass-critical case p=1+8/d,we prove the orbital stability on a certain mass level below‖Q*‖L2,provided thatμ∈(-λ1,0),where■and Q*=Q1+8/d.The proofs are mainly based on the profile decomposition and a sharp Gagliardo-Nirenberg type inequality.Our treatment allows us to fill the gap concerning the existence of the ground states for the BNLS when p is negative and p∈(1,1+8/d].
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
文摘On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.
基金National Natural Science Foundation of China(No.59779005)
文摘The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.
基金the NSF of Hunan Province and the Science and Technology Development Foundation of Xiangtan Polytechnic University
文摘By using the Smith normal form of polynomial matrix and algebraic methods, this paper discusses the solvability for the linear matrix equation A iXB i=C over a field, and obtains the explicit formulas of general solution or unique solution.
基金supported by the National Natural Science Foundation of China(11071119,11171153)
文摘In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.
文摘In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originated from the normal distribution. While the second algorithm applies the well-known Darboux Theory. These two algorithms draw the same geodesic equation. Finally, we applied Baltzer R.’s finding to compute the Gaussian Curvature.
文摘The authors announce a newly-proved theorem of theirs. This theorem is of principal significance to numerical computation of operator equations of the first kind.
文摘In each equation of simultaneous Equation model, the exogenous variables need to satisfy all the basic assumptions of linear regression model and be non-negative especially in econometric studies. This study examines the performances of the Ordinary Least Square (OLS), Two Stage Least Square (2SLS), Three Stage Least Square (3SLS) and Full Information Maximum Likelihood (FIML) Estimators of simultaneous equation model with both normally and uniformly distributed exogenous variables under different identification status of simultaneous equation model when there is no correlation of any form in the model. Four structural equation models were formed such that the first and third are exact identified while the second and fourth are over identified equations. Monte Carlo experiments conducted 5000 times at different levels of sample size (n = 10, 20, 30, 50, 100, 250 and 500) were used as criteria to compare the estimators. Result shows that OLS estimator is best in the exact identified equation except with normally distributed exogenous variables when . At these instances, 2SLS estimator is best. In over identified equations, the 2SLS estimator is best except with normally distributed exogenous variables when the sample size is small and large, and;and with uniformly distributed exogenous variables when n is very large, , the best estimator is either OLS or FIML or 3SLS.
文摘We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation language M ATHEMATICA,and extending the matrix representation method.This method can be used to calculate the focal value of any high order terms.This method has been verified by an example.The advantage of this method is simple and more readily applicable.the result is directly obtained by substitution.
文摘We are engaged in solving two difficult problems in adaptive control of the large-scale time-variant aerospace system. One is parameter identification of time-variant continuous-time state-space modei; the other is how to solve algebraic Riccati equation (ARE) of large order efficiently. In our approach, two neural networks are employed to independently solve both the system identification problem and the ARE associated with the optimal control problem. Thus the identification and the control computation are combined in closed-loop, adaptive, real-time control system . The advantage of this approach is that the neural networks converge to their solutions very quickly and simultaneously.
基金This manuscript is supported by the National Natural Science Foundation of China(Grant numbers:52108398,52225806,52078063)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province(kfj210502).
文摘This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxial compression,and indirect tensile.The Desai yield surface and fatigue path were proposed.And a normalized fatigue characteristics model of the mixture was established.The following conclusions were obtained.With the increases in the loading rate,the strength of the asphalt mixture increased.As the temperature increases,the strength of the mixture is reduced.At various temperatures and rates,the strength forms a closed curved surface.The Desai strength yield surface was established,which forms a closed curved surface.When the loading rate and temperature are below a certain critical line,the asphalt mixture will not undergo strength damage.At a fixed stress state,the fatigue damage path of the mixture was determined.The stress ratio was determined considering the influence of the loading rate.In this way,a normalized model can be described to express the asphalt mixture fatigue properties at various temperatures and stress levels.For the asphalt mixture in an indirect tensile state,the normalized fatigue equation parameter is 4.09.This model is more suitable for reflecting the viscous-elastic behavior of the mixtures than the fatigue equation determined by the notional stress ratio.
基金Supported partly by NSF of China(Grant No.11801163)NSF of Hunan Province(Grant Nos.2021JJ50032,2023JJ50164 and 2023JJ50165)Degree&Postgraduate Reform Project of Hunan University of Technology and Hunan Province(Grant Nos.JGYB23009 and 2024JGYB210).
文摘We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.
基金supported by the National Natural Science Foundation of China(No.41174087,41204089)the National Oil and Gas Major Project(No.2011ZX05005-005)
文摘Prestack reverse time migration(PSTM) is a common imaging method; however low-frequency noises reduce the structural imaging precision. Thus, the suppression of migration noises must be considered. The generation mechanism of low-frequency noises is analyzed and the up-, down-, left-, and right-going waves are separated using the Poynting vector of the acoustic wave equation. The computational complexity and memory capacitance of the proposed method are far smaller than that required when using the conventional separation algorithm of 2D Fourier transform. The normalized wavefield separation crosscorrelation imaging condition is used to suppress low-frequency noises in reverse time migration and improve the imaging precision. Numerical experiments using the Marmousi model are performed and the results show that the up-, down-, left-, and right-going waves are well separated in the continuation of the wavefield using the Poynting vector. We compared the imaging results with the conventional method, Laplacian filtering, and wavefield separation with the 2D Fourier transform. The comparison shows that the migration noises are well suppressed using the normalized wavefield separation cross-correlation imaging condition and higher precision imaging results are obtained.
基金supported by Natural Science Foundation of Fujian Province(No.2022J013392020J01708)National Foundation Training Program of Jimei University(ZP2020057).
文摘In this paper,we investigate the following p-Kirchhoff equation{∫R^(N)|u|^(2)dx=ρ,(a+b)∫RN(|Δu}^(p)+|u|^(p))dx)(-Δpu+|u|^(p-2u)=|u|^(s-2)u+μu,x∈R^(N),where a>0,b≥0,p>0 are constants,constants,p*=N-P/Np is the critical Sobolev exponent,μis a Lagrange multiplier,-Δpu=-div(|Δu|_(p-2)u),2<p<N2p,μ∈R,and s∈(2N/N+2p-2,p*).We demonstratethat he p-Kirchhoff equation has a normalized solution using the mountain pass lemma and some analysis techniques.