Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes...Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes the application of GPU parallel processing technology to the focusing inversion method, aiming at improving the inversion accuracy while speeding up calculation and reducing the memory consumption, thus obtaining the fast and reliable inversion results for large complex model. In this paper, equivalent storage of geometric trellis is used to calculate the sensitivity matrix, and the inversion is based on GPU parallel computing technology. The parallel computing program that is optimized by reducing data transfer, access restrictions and instruction restrictions as well as latency hiding greatly reduces the memory usage, speeds up the calculation, and makes the fast inversion of large models possible. By comparing and analyzing the computing speed of traditional single thread CPU method and CUDA-based GPU parallel technology, the excellent acceleration performance of GPU parallel computing is verified, which provides ideas for practical application of some theoretical inversion methods restricted by computing speed and computer memory. The model test verifies that the focusing inversion method can overcome the problem of severe skin effect and ambiguity of geological body boundary. Moreover, the increase of the model cells and inversion data can more clearly depict the boundary position of the abnormal body and delineate its specific shape.展开更多
We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described ...We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.展开更多
For CFD results to be useful in IC engine analysis, simulation results should be accurate and consistent. However, with wide spread use of parallel computing nowadays, it has been reported that a model would not give ...For CFD results to be useful in IC engine analysis, simulation results should be accurate and consistent. However, with wide spread use of parallel computing nowadays, it has been reported that a model would not give the same results against the same input when the parallel computing environment is changed. The effect of parallel environment on simulation results needs to be carefully investigated and understood. In this paper, the solution inconsistency of parallel CFD simulations is investigated. First, the concept of solution inconsistency on parallel computing is reviewed, followed by a systematic CFD simulations specific to IC engine applications. The solution inconsistency against the number of CPU cores was examined using a commercial CFD code CONVERGE. A test matrix was specifically designed to examine the core number effect on engine flow, spray and combustion submodels performance. It was found that the flow field simulation during the gas exchange process is the most sensitive to the number of cores among all submodels examined. An engineering solution was developed where local upwind scheme was used to control the variability, which showed good performance. The implication of the observed inconsistency was also discussed.展开更多
In this paper, a 3rd order combination method with three processes and a 4th order combination method with five processes for solving ODEs are discussed. These methods are the Runge-Kutta method combined with a linear...In this paper, a 3rd order combination method with three processes and a 4th order combination method with five processes for solving ODEs are discussed. These methods are the Runge-Kutta method combined with a linear multistep method, which overcomes the defect of the 3rd order parallel Runge-Kutta method discussed in [1].展开更多
As an important branch of information technology, high-performance computing has expanded its application field and its influence has been expanding. High-performance computing is always a key area of application in m...As an important branch of information technology, high-performance computing has expanded its application field and its influence has been expanding. High-performance computing is always a key area of application in meteorology. We used field research and literature review methods to study the application of high performance computing in China’s meteorological department, and obtained the following results: 1) China Meteorological Department gradually established the first high-performance computer system since 1978. High-performance computing services can support operational numerical weather prediction models. 2) The Chinese meteorological department has always used the relatively advanced high-performance computing technology, and the business system capability has been continuously improved. The computing power has become an important symbol of the level of meteorological modernization. 3) High-performance computing technology and meteorological numerical forecasting applications are increasingly integrated, and continue to innovate and develop. 4) In the future, high-performance computing resource management will gradually transit from the current local pre-allocation mode to the local remote unified scheduling and shared use. In summary, we have come to the conclusion that the performance calculation business of the meteorological department will usher in a better tomorrow.展开更多
In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed...In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed using Saul’yev asymmetric scheme. The stability and convergence of the GE scheme of time fractional diffusion equation are analyzed by mathematical induction. Then, the theoretical analysis is verified by numerical experiments, which shows that the GE scheme is effective for solving the time fractional diffusion equation.展开更多
The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics ...The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics of the components.For the conventional frequency-domain electromagnetic analysis using FEM(Finite Element Method),the system matrix is complex-numbered as well as indefinite.The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps.However,such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver.It is also hard to benefit from matrix factorization techniques due to varying system matrix parts according to frequency.Overall,it is hard to adopt conventional iterative solvers even though the system matrix is sparse.A new parallel iterative FEM solver for frequency domain analysis is implemented for inhomogeneous waveguide structures in this paper.In this implementation,the previous solution of the iterative solver of Matlab(Matrix Laboratory)employ-ing the preconditioner is used for the initial guess for the next step’s solution process.The overlapped parallel stage using Matlab’s Parallel Computing Toolbox is also proposed to alleviate the cold starting,which ruins the convergence of early steps in each parallel stage.Numerical experiments based on waveguide structures have demonstrated the accuracy and efficiency of the proposed scheme.展开更多
We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross...We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross section of spherical Earth, and corresponding wave equations are defined in 2-D cylindrical coordinates. Spatial derivatives in the wave equations are approximated with efficient and high accuracy PSM in the lateral and high-order FDM in the radial direction on staggered grids. This algorithm allows us to divide the whole-Earth into sub-domains in radial direction and implement efficient parallel computing on PC cluster, while retains high accuracy and efficiency of PSM in lateral direction. A transformation of moment tensor between 3-D spherical Earth and our 2-D model was proposed to give corre- sponding moment tensor components used in 2-D modeling. Comparison of modeling results with those obtained by direct solution method shows very good accuracy of our algorithm. We also demonstrate its feasibility with a lateral heterogeneous whole-Earth model with localized velocity perturbation.展开更多
The transformation of parallel translation can improve the smoothness of discrete series sometimes. In this paper, for ship pitch, a method to modify the system error is proposed via the transformation of parallel tra...The transformation of parallel translation can improve the smoothness of discrete series sometimes. In this paper, for ship pitch, a method to modify the system error is proposed via the transformation of parallel translation, which can give the optimize parameters using the Method of Minimum Squares. The series in the method can fit white exponential law better, and then be applied in GM (1,1) very well. The numerical experiments imply that the method is practical, which make the ship pitch system model more accurate than GM ( 1,1 ).展开更多
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
间断有限元算法(Discontinuous Galerkin Finite Element Method,DGM)是一种高精度的数值求解算法,针对电磁工程应用中DGM并行计算效率低、计算量较大的问题,提出了基于SW26010平台的并行DGM算法。通过区域分解、数据结构重构、热点函...间断有限元算法(Discontinuous Galerkin Finite Element Method,DGM)是一种高精度的数值求解算法,针对电磁工程应用中DGM并行计算效率低、计算量较大的问题,提出了基于SW26010平台的并行DGM算法。通过区域分解、数据结构重构、热点函数从核并行计算、计算与通信重叠及从核缓冲优化技术完成了DGM算法的并行优化。实现结果表明,与基于MPI进程级的DGM并行算法相比,可以获得46.8的平均加速比。展开更多
To conduct a large-scale hydrologic-response and landform evolution simulation at high resolution,a complex physics-based numerical model,the Integrated Hydrology Model(InHM),was revised utilizing cluster parallel com...To conduct a large-scale hydrologic-response and landform evolution simulation at high resolution,a complex physics-based numerical model,the Integrated Hydrology Model(InHM),was revised utilizing cluster parallel computing.The parallelized InHM(ParInHM) divides the simulated area into multiple catchments based on geomorphologic features,and generates boundary-value problems for each catchment to construct simulation tasks,which are then dispatched to different computers to start the simulation.Landform evolution is considered during simulating and implemention in one framework.The dynamical Longest-Processing-Time(LPT) first scheduling algorithm is applied to job management.In addition,a pause-integratedivide-resume routine method is used to ensure the hydrologic validity during the simulation period.The routine repeats until the entire simulation period is finished.ParInHM has been tested in a computer cluster that uses 16 processors for the calculation,to simulate 100 years' hydrologic-response and soil erosion for the 117-km2 Kaho'olawe Island in the Hawaiian Islands under two different mesh resolutions.The efficiency of ParInHM was evaluated by comparing the performance of the cluster system utilizing different numbers of processors,as well as the performance of non-parallelized system without domain decomposition.The results of this study show that it is feasible to conduct a regional-scale hydrologic-response and sediment transport simulation at high resolution without demanding significant computing resources.展开更多
The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory e...The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.展开更多
Extreme-scale numerical simulations seriously demand extreme parallel computing capabilities. To address the challenges of these capabilities toward exascale, we systematically analyze the major bottlenecks of paralle...Extreme-scale numerical simulations seriously demand extreme parallel computing capabilities. To address the challenges of these capabilities toward exascale, we systematically analyze the major bottlenecks of parallel computing research from three perspectives: computational scale, computing efficiency, and programming productivity. For these bottlenecks, we propose a series of urgent key issues and coping strategies. This study will be useful in synchronizing development between the numerical computing capability and supercomputer peak performance.展开更多
基金Supported by Project of National Natural Science Foundation(No.41874134)
文摘Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes the application of GPU parallel processing technology to the focusing inversion method, aiming at improving the inversion accuracy while speeding up calculation and reducing the memory consumption, thus obtaining the fast and reliable inversion results for large complex model. In this paper, equivalent storage of geometric trellis is used to calculate the sensitivity matrix, and the inversion is based on GPU parallel computing technology. The parallel computing program that is optimized by reducing data transfer, access restrictions and instruction restrictions as well as latency hiding greatly reduces the memory usage, speeds up the calculation, and makes the fast inversion of large models possible. By comparing and analyzing the computing speed of traditional single thread CPU method and CUDA-based GPU parallel technology, the excellent acceleration performance of GPU parallel computing is verified, which provides ideas for practical application of some theoretical inversion methods restricted by computing speed and computer memory. The model test verifies that the focusing inversion method can overcome the problem of severe skin effect and ambiguity of geological body boundary. Moreover, the increase of the model cells and inversion data can more clearly depict the boundary position of the abnormal body and delineate its specific shape.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 10301034 and 40574069), The authors thank Professor Du Q very much for his important discussions.
文摘We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.
文摘For CFD results to be useful in IC engine analysis, simulation results should be accurate and consistent. However, with wide spread use of parallel computing nowadays, it has been reported that a model would not give the same results against the same input when the parallel computing environment is changed. The effect of parallel environment on simulation results needs to be carefully investigated and understood. In this paper, the solution inconsistency of parallel CFD simulations is investigated. First, the concept of solution inconsistency on parallel computing is reviewed, followed by a systematic CFD simulations specific to IC engine applications. The solution inconsistency against the number of CPU cores was examined using a commercial CFD code CONVERGE. A test matrix was specifically designed to examine the core number effect on engine flow, spray and combustion submodels performance. It was found that the flow field simulation during the gas exchange process is the most sensitive to the number of cores among all submodels examined. An engineering solution was developed where local upwind scheme was used to control the variability, which showed good performance. The implication of the observed inconsistency was also discussed.
文摘In this paper, a 3rd order combination method with three processes and a 4th order combination method with five processes for solving ODEs are discussed. These methods are the Runge-Kutta method combined with a linear multistep method, which overcomes the defect of the 3rd order parallel Runge-Kutta method discussed in [1].
文摘As an important branch of information technology, high-performance computing has expanded its application field and its influence has been expanding. High-performance computing is always a key area of application in meteorology. We used field research and literature review methods to study the application of high performance computing in China’s meteorological department, and obtained the following results: 1) China Meteorological Department gradually established the first high-performance computer system since 1978. High-performance computing services can support operational numerical weather prediction models. 2) The Chinese meteorological department has always used the relatively advanced high-performance computing technology, and the business system capability has been continuously improved. The computing power has become an important symbol of the level of meteorological modernization. 3) High-performance computing technology and meteorological numerical forecasting applications are increasingly integrated, and continue to innovate and develop. 4) In the future, high-performance computing resource management will gradually transit from the current local pre-allocation mode to the local remote unified scheduling and shared use. In summary, we have come to the conclusion that the performance calculation business of the meteorological department will usher in a better tomorrow.
文摘In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed using Saul’yev asymmetric scheme. The stability and convergence of the GE scheme of time fractional diffusion equation are analyzed by mathematical induction. Then, the theoretical analysis is verified by numerical experiments, which shows that the GE scheme is effective for solving the time fractional diffusion equation.
基金supported by Institute of Information&communications Technology Planning&Evaluation(ITP)grant funded by the Korea govermment(MSIT)(No.2019-0-00098,Advanced and Integrated Software Development for Electromagnetic Analysis)supported by Research Assistance Program(2021)in the Incheon National University.
文摘The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics of the components.For the conventional frequency-domain electromagnetic analysis using FEM(Finite Element Method),the system matrix is complex-numbered as well as indefinite.The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps.However,such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver.It is also hard to benefit from matrix factorization techniques due to varying system matrix parts according to frequency.Overall,it is hard to adopt conventional iterative solvers even though the system matrix is sparse.A new parallel iterative FEM solver for frequency domain analysis is implemented for inhomogeneous waveguide structures in this paper.In this implementation,the previous solution of the iterative solver of Matlab(Matrix Laboratory)employ-ing the preconditioner is used for the initial guess for the next step’s solution process.The overlapped parallel stage using Matlab’s Parallel Computing Toolbox is also proposed to alleviate the cold starting,which ruins the convergence of early steps in each parallel stage.Numerical experiments based on waveguide structures have demonstrated the accuracy and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Granted Nos.41174034 and 40874020)
文摘We present a parallel hybrid algorithm based on pseudospectral method (PSM) and finite difference method (FDM) for two-dimensional (2-D) global SH- wavefield simulation. The whole-Earth model is taken as a cross section of spherical Earth, and corresponding wave equations are defined in 2-D cylindrical coordinates. Spatial derivatives in the wave equations are approximated with efficient and high accuracy PSM in the lateral and high-order FDM in the radial direction on staggered grids. This algorithm allows us to divide the whole-Earth into sub-domains in radial direction and implement efficient parallel computing on PC cluster, while retains high accuracy and efficiency of PSM in lateral direction. A transformation of moment tensor between 3-D spherical Earth and our 2-D model was proposed to give corre- sponding moment tensor components used in 2-D modeling. Comparison of modeling results with those obtained by direct solution method shows very good accuracy of our algorithm. We also demonstrate its feasibility with a lateral heterogeneous whole-Earth model with localized velocity perturbation.
文摘The transformation of parallel translation can improve the smoothness of discrete series sometimes. In this paper, for ship pitch, a method to modify the system error is proposed via the transformation of parallel translation, which can give the optimize parameters using the Method of Minimum Squares. The series in the method can fit white exponential law better, and then be applied in GM (1,1) very well. The numerical experiments imply that the method is practical, which make the ship pitch system model more accurate than GM ( 1,1 ).
基金This work is supported in partial by Major State Basic Research Project (No. G19990328, Parallel Computations of the Large-Scale Reservoir Simulation (2003-2004) (Cooperated with China National 0ffshore 0il Corporation), and National Natural Science Foundation Project (No. 60303020, 2004.1-2006.12).
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
文摘间断有限元算法(Discontinuous Galerkin Finite Element Method,DGM)是一种高精度的数值求解算法,针对电磁工程应用中DGM并行计算效率低、计算量较大的问题,提出了基于SW26010平台的并行DGM算法。通过区域分解、数据结构重构、热点函数从核并行计算、计算与通信重叠及从核缓冲优化技术完成了DGM算法的并行优化。实现结果表明,与基于MPI进程级的DGM并行算法相比,可以获得46.8的平均加速比。
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB409901-1)Zhejiang Provincial Natural Science Foundation of China (Grant No. R5110012)the E-Project of Microsoft Research Asia
文摘To conduct a large-scale hydrologic-response and landform evolution simulation at high resolution,a complex physics-based numerical model,the Integrated Hydrology Model(InHM),was revised utilizing cluster parallel computing.The parallelized InHM(ParInHM) divides the simulated area into multiple catchments based on geomorphologic features,and generates boundary-value problems for each catchment to construct simulation tasks,which are then dispatched to different computers to start the simulation.Landform evolution is considered during simulating and implemention in one framework.The dynamical Longest-Processing-Time(LPT) first scheduling algorithm is applied to job management.In addition,a pause-integratedivide-resume routine method is used to ensure the hydrologic validity during the simulation period.The routine repeats until the entire simulation period is finished.ParInHM has been tested in a computer cluster that uses 16 processors for the calculation,to simulate 100 years' hydrologic-response and soil erosion for the 117-km2 Kaho'olawe Island in the Hawaiian Islands under two different mesh resolutions.The efficiency of ParInHM was evaluated by comparing the performance of the cluster system utilizing different numbers of processors,as well as the performance of non-parallelized system without domain decomposition.The results of this study show that it is feasible to conduct a regional-scale hydrologic-response and sediment transport simulation at high resolution without demanding significant computing resources.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277150,41977219)Henan Provincial Science and Technology Research Project(Grant No.222102320271).
文摘The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.
基金Project supported by the National Natural Science Foundation of China(No.91430218)the National Key Technology R&D Program of China(Nos.2016YFB0201300 and 2017YFB0202103)
文摘Extreme-scale numerical simulations seriously demand extreme parallel computing capabilities. To address the challenges of these capabilities toward exascale, we systematically analyze the major bottlenecks of parallel computing research from three perspectives: computational scale, computing efficiency, and programming productivity. For these bottlenecks, we propose a series of urgent key issues and coping strategies. This study will be useful in synchronizing development between the numerical computing capability and supercomputer peak performance.