Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to di...Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry.In this article,we compare coin cells and pouch cells of different size with exactly the same electrode materials,electrolyte,and electrochemical conditions.We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy(EIS)and Galvanostatic Intermittent Titration Technique(GITT).Using full cell NCA-graphite LIBs,we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode.We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.展开更多
Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with ...Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with electrode materials limit its large-scale application.Generally,localized high concentration electrolyte(LHCE)is obtained by introducing an electrochemically inert diluent into HCE to avoid the above-mentioned problems while maintaining the high interphasial stability of HCE with graphite anode.Unlike traditional inert diluents,1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluropropyl ether(TTE)with electrochemical activity is introduced into propylene carbonate(PC)-based HCE to obtain LHCE-2(1 M LiPF_(6),PC:DMC:TTE=1:1:6.1)herein.Experimental and theoretical simulation results show that TTE participates in the oxidation decomposition and film-forming reaction at the NCM622 cathode surface,conducting a cathode electrolyte interphase(CEI)rich in organic fluorides with excellent electron insulation ability,high structural stability and low interphasial impedance.Thanks to the outstanding interphasial properties induced by LHCE-2,the graphite||NMC622 pouch cell reaches a capacity retention of 80%after 500 cycles at 1 C under room temperature.While at sub-zero temperatures,the capacity released by the cell with LHCE-2 electrolyte is significantly higher than that of HCE and conventional EC-based electrolytes.Meanwhile,the LHCE-2 electrolyte inherits the advantages of TTE flame-resistant,thus improving the safety of the battery.展开更多
The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide h...The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide high currents at high voltage levels.In addition to efectively monitoring all the electrical parameters of a battery pack system,such as the voltage,current,and temperature,the BMS is also used to improve the battery performance with proper safety measures within the system.With growing acceptance of lithium-ion batteries,major industry sectors such as the automotive,renewable energy,manufacturing,construction,and even some in the mining industry have brought forward the mass transition from fossil fuel dependency to electric powered machinery and redefned the world of energy storage.Hence,the functional safety considerations,which are those relating to automatic protection,in battery management for battery pack technologies are particularly important to ensure that the overall electrical system,regardless of whether it is for electric transportation or stationary energy storage,is in accordance with high standards of safety,reliability,and quality.If the system or product fails to meet functional and other safety requirements on account of faulty design or a sequence of failure events,then the environment,people,and property could be endangered.This paper analyzed the details of BMS for electric transportation and large-scale energy storage systems,particularly in areas concerned with hazardous environment.The analysis covers the aspect of functional safety that applies to BMS and is in accordance with the relevant industrial standards.A comprehensive evaluation of the components,architecture,risk reduction techniques,and failure mode analysis applicable to BMS operation was also presented.The article further provided recommendations on safety design and performance optimization in relation to the overall BMS integration.展开更多
As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-...As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-temperature working condition.展开更多
基金funding from the ERC(Consolidator Grant MIGHTY,866005)the Innovate UK(UKRI:104174)Faraday Institution-Future CAT(FIRG017)and Degradation(FIRG001)
文摘Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry.In this article,we compare coin cells and pouch cells of different size with exactly the same electrode materials,electrolyte,and electrochemical conditions.We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy(EIS)and Galvanostatic Intermittent Titration Technique(GITT).Using full cell NCA-graphite LIBs,we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode.We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.
基金supported by the National Natural Science Foundation of China (No.21972049)the Guangdong-Hong KongMacao Greater Bay Area Exchange Programs of SCNU (2022)。
文摘Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with electrode materials limit its large-scale application.Generally,localized high concentration electrolyte(LHCE)is obtained by introducing an electrochemically inert diluent into HCE to avoid the above-mentioned problems while maintaining the high interphasial stability of HCE with graphite anode.Unlike traditional inert diluents,1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluropropyl ether(TTE)with electrochemical activity is introduced into propylene carbonate(PC)-based HCE to obtain LHCE-2(1 M LiPF_(6),PC:DMC:TTE=1:1:6.1)herein.Experimental and theoretical simulation results show that TTE participates in the oxidation decomposition and film-forming reaction at the NCM622 cathode surface,conducting a cathode electrolyte interphase(CEI)rich in organic fluorides with excellent electron insulation ability,high structural stability and low interphasial impedance.Thanks to the outstanding interphasial properties induced by LHCE-2,the graphite||NMC622 pouch cell reaches a capacity retention of 80%after 500 cycles at 1 C under room temperature.While at sub-zero temperatures,the capacity released by the cell with LHCE-2 electrolyte is significantly higher than that of HCE and conventional EC-based electrolytes.Meanwhile,the LHCE-2 electrolyte inherits the advantages of TTE flame-resistant,thus improving the safety of the battery.
基金supported by Azure Mining Technology,CCTEG,and the University of Wollongong.
文摘The battery management system(BMS)is the main safeguard of a battery system for electric propulsion and machine electrifcation.It is tasked to ensure reliable and safe operation of battery cells connected to provide high currents at high voltage levels.In addition to efectively monitoring all the electrical parameters of a battery pack system,such as the voltage,current,and temperature,the BMS is also used to improve the battery performance with proper safety measures within the system.With growing acceptance of lithium-ion batteries,major industry sectors such as the automotive,renewable energy,manufacturing,construction,and even some in the mining industry have brought forward the mass transition from fossil fuel dependency to electric powered machinery and redefned the world of energy storage.Hence,the functional safety considerations,which are those relating to automatic protection,in battery management for battery pack technologies are particularly important to ensure that the overall electrical system,regardless of whether it is for electric transportation or stationary energy storage,is in accordance with high standards of safety,reliability,and quality.If the system or product fails to meet functional and other safety requirements on account of faulty design or a sequence of failure events,then the environment,people,and property could be endangered.This paper analyzed the details of BMS for electric transportation and large-scale energy storage systems,particularly in areas concerned with hazardous environment.The analysis covers the aspect of functional safety that applies to BMS and is in accordance with the relevant industrial standards.A comprehensive evaluation of the components,architecture,risk reduction techniques,and failure mode analysis applicable to BMS operation was also presented.The article further provided recommendations on safety design and performance optimization in relation to the overall BMS integration.
基金partially supported by the National Natural Science Foundation of China (grant no. 22021001, 22179111)the Ministry of Science and Technology of China (grant no. 2021YFA1201900)+3 种基金the Basic Research Program of Tan Kah Kee Innovation Laboratory (grant no. RD2021070401)the Principal Fund from Xiamen University (grant no. 20720210015)the Fundamental Research Funds for the Central Universities (grant no. 20720220010)the National Natural Science Foundation of China (grant no. 22202082)。
文摘As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-temperature working condition.