期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Simulation of large-scale numerical substructure in real-time dynamic hybrid testing 被引量:7
1
作者 Zhu Fei Wang Jinting +2 位作者 Jin Feng Zhou Mengxia Gui Yao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期599-609,共11页
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal... A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained. 展开更多
关键词 real-time dynamic hybrid testing large-scale numerical substructure control signal generation finite element simulation
下载PDF
Design of a large-scale model for wind tunnel test of a multiadaptive flap concept
2
作者 Mürüvvet Sinem SICIM DEMIRCI Rosario PECORA Metin Orhan KAYA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期58-80,共23页
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno... The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses. 展开更多
关键词 Morphing structures Smart aircraft Morphing flap Adaptive systems Finger-like ribs Wind tunnel tests large-scale morphing archi-tectures Variable camber airfoil
原文传递
Large-scale experimental study on scour around offshore wind monopiles under irregular waves 被引量:1
3
作者 Song-gui Chen En-yu Gong +2 位作者 Xu Zhao Taro Arikawa Xin Chen 《Water Science and Engineering》 EI CAS CSCD 2022年第1期40-46,共7页
The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the loc... The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour. 展开更多
关键词 Keulegan-Carpenter number large-scale test Scour hole shape Equilibrium scour depth Local scour hole volume
下载PDF
Laboratory large-scale pullout investigation of a new reinforcement ofcomposite geosynthetic strip
4
作者 Mehrdad Tajabadipour Seyed Hamid Lajevardi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1147-1159,共13页
In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a ... In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a geosynthetic strip(GS)and parts of a scrap truck tire as transverse members.The experimental pullout results for the CGS reinforcement were compared with the suggested theoretical equations and ordinary reinforcements,including the GS,the steel strip(SS),and the steel strip with rib(SSR).The pullout test results show that adding three transverse members to the GS reinforcement(CGS3)with S/H?6.6(where S and H are the space and height of the transverse members,respectively)increases pullout resistance by more than 120%,170%,and 50%compared to the GS,the SS,and the SSR,respectively.This result shows that the CGS3(CGS with three transverse members)reinforcement needs at least 55.5%,63%,and 33.3%smaller length compared to the GS,the SS,and the SSR,respectively.In general,implementation of mechanically stabilized earth wall(MSEW)with the proposed strip may help geotechnical engineers prevent costly designs and solve the problem of MSEW implementation in cases where there are limitations of space. 展开更多
关键词 Pullout resistance Composite geosynthetic strip(CGS) Soilegeosynthetic interface Scrap tires large-scale pullout tests
下载PDF
Large-scale model test study on the water pressure resistance of construction joints of karst tunnel linings
5
作者 Meng HUANG Mingli HUANG +2 位作者 Ze YANG Yuan SONG Zhien ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第8期1249-1263,共15页
Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnel... Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels.A large-scale model test was designed and conducted,innovatively transforming the external water pressure of the lining construction joint into internal water pressure.The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed,and the reliability of the model test was verified via numerical calculations.The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints.The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop.In addition,the type of waterstop significantly influences the water pressure resistance of lining construction joints.The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop,and both have more advantages than the rubber waterstop.The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results,indicating that the model test results have high accuracy and reliability.This study provides a reference for similar projects and has wide applications. 展开更多
关键词 karst tunnel lining construction joint water pressure resistance large-scale model test numerical calculations
原文传递
TESTING DIFFERENT CONJUGATE GRADIENT METHODS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION 被引量:10
6
作者 Yu-hongDai QinNi 《Journal of Computational Mathematics》 SCIE CSCD 2003年第3期311-320,共10页
In this paper we test different conjugate gradient (CG) methods for solving large-scale unconstrained optimization problems. The methods are divided in two groups: the first group includes five basic CG methods and th... In this paper we test different conjugate gradient (CG) methods for solving large-scale unconstrained optimization problems. The methods are divided in two groups: the first group includes five basic CG methods and the second five hybrid CG methods. A collection of medium-scale and large-scale test problems are drawn from a standard code of test problems, CUTE. The conjugate gradient methods are ranked according to the numerical results. Some remarks are given. 展开更多
关键词 Conjugate gradient methods large-scale Unconstrained optimization Numerical tests.
原文传递
The Reliability and Operational Test System of a Power Grid with Large-scale Renewable Integration 被引量:5
7
作者 Jianxue Wang Jingdong Wei +1 位作者 Yuchao Zhu Xiuli Wang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第3期704-711,共8页
This paper proposes a reliability and operational test system named XJTU-ROTS2017,characterized by large-scale renewable power integration and long-distance transmission.The test system has 38 nodes,63 lines,15 transf... This paper proposes a reliability and operational test system named XJTU-ROTS2017,characterized by large-scale renewable power integration and long-distance transmission.The test system has 38 nodes,63 lines,15 transformers and 20 generators in three areas,with peak load 10,421 MW and total installed capacity 16050 MW.Electricity primarily transmits from a resource-rich area to a load area,carrying wind/solar power generation.The determination of component parameters and grid topology is based on design manuals and typical practices.The test system can be conveniently applied to reliability evaluation and operation optimization of composite power systems integrating coal/hydro/solar/wind resources.Finally,the extended applications to AC/DC hybrid power systems and interconnected power systems are discussed. 展开更多
关键词 test system large-scale renewable energy RELIABILITY operation XJTU-ROTS2017
原文传递
Large-Scale Test Model of the Progressive Deformation and Failure of Cracked Soil Slopes 被引量:4
8
作者 Zhi Zhou Jiaming Zhang +3 位作者 Fulong Ning Yi Luo Lily Chong Kuangbiao Sun 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1097-1108,共12页
A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking... A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking the Anhui area along the Yangtze River as a field example.The results indicate that(1)during rainfall,the soil around the shallow shrinkage fissures attains transient saturation,and the attendant decrease of matric suction is the primary cause of the shallow slope failure;(2)slope deformation continues during post-rainfall evaporation;(3)if a period of evaporation is followed by heavy rainfall,soil creep is concentrated near the deepest cracks,and two zones of steep gradients in pore pressure form at the crest and toe of the slope.Finally,a saturated zone forms near each crack base and gradually enlarges,eventually forming a continuous saturated layer that induces the slope instability or failure. 展开更多
关键词 slope failure geological engineering cracked soil slope large-scale test progressive deformation
原文传递
Shear behavior of coarse aggregates for dam construction under varied stress paths 被引量:9
9
作者 Liu Hanlong Deng An Shen Yang 《Water Science and Engineering》 EI CAS 2008年第1期63-77,共15页
Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stre... Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stress states complicate the shear behavfor of coarse aggregates, and thus impede the high dam's proper construction, operation and maintenance. An experimental program was conducted to study the shear behavior of dam coarse aggregates using a large-scale triaxial shear apparatus. Through triaxial shear tests, the strain-stress behaviors of aggregates were observed under constant confining pressures: 300 kPa, 600 kPa 900 kPa and 1200 kPa. Shear strengths and aggregate breakage characteristics associated with high pressure shear processes are discussed. Stress path tests were conducted to observe and analyze coarse aggregate response under complex stress states. In triaxial shear tests, it was found that peak deviator stresses increase along with confining pressures, whereas the peak principal stress ratios decrease as confining pressures increase With increasing confining pressures, the dilation decreases and the contraction eventually prevails. Initial strength parameters (Poisson's ratio and tangent modulus) show a nonlinear relationship with confining pressures when the pressures are relatively low. Shear strength parameters decrease with increasing confining pressures. The failure envelope lines are convex curves, with clear curvature under low confining pressures. Under moderate confining pressures, dilation is offset by particle breakage. Under high confining pressures, dilation disappears. 展开更多
关键词 coarse aggregate large-scale triaxial shear test high confining pressure stress path stress-strain behavior BREAKAGE
下载PDF
Experimental study on seismic response and progressive failure characteristics of bedding rock slopes 被引量:3
10
作者 Mingdong Zang Guoxiang Yang +3 位作者 Jinyu Dong Shengwen Qi Jianxian He Ning Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1394-1405,共12页
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s... Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides. 展开更多
关键词 Bedding rock slope large-scale shaking table test Seismic response Progressive failure characteristics
下载PDF
Decisive Parameters for Backwater Effects Caused by Floating Debris Jams 被引量:4
11
作者 Arnd Hartlieb 《Open Journal of Fluid Dynamics》 2017年第4期475-484,共10页
The dimensional analysis of the backwater effect caused by debris jams results in the Froude number of the approach flow in the initial situation prior to debris jam formation and the debris density as decisive parame... The dimensional analysis of the backwater effect caused by debris jams results in the Froude number of the approach flow in the initial situation prior to debris jam formation and the debris density as decisive parameters. For the more precise detection of the influence of both parameters the results of different hydraulic model test series at the Laboratory of Hydraulic and Water Resources Engineering of the Technical University of Munich concerning debris jams at spillways as well as at racks for the retention of wooden debris were uniformly evaluated. On the one hand a significant increase of the backwater effect with a rising Froude number of the approach flow could be shown. This is in good correlation to recent test results for debris jams at retention racks at the Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss Federal Institute of Technology Zurich. On the other hand a significant increase of the backwater effect could also be shown for a rising debris density. However, the test results also show that significantly different backwater effects can occur in different test runs with identical test conditions. These differences are a result of the randomness of debris jam development, and therefore, a more exact quantification of the dependence of the backwater effect on the Froude number of the approach flow and on the debris density is not considered useful for the present results. 展开更多
关键词 HYDRAULIC Engineering Natural Hazards FLOATING DEBRIS JAMS large-scale HYDRAULIC Model tests
下载PDF
Behavior of Pile Group with Elevated Cap Subjected to Cyclic Lateral Loads
12
作者 陈云敏 顾明 +3 位作者 陈仁朋 孔令刚 张浙杭 边学成 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期565-578,共14页
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by w... The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures. 展开更多
关键词 pile group large-scale model test cyclic lateral loads stiffness degradation SETTLEMENT
下载PDF
A laboratory study of stress arching around an inclusion due to pore pressure changes
13
作者 Hani Asaei Mahdi Moosavi Mohammad Ali Aghighi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期678-693,共16页
When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressur... When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressure change in the region. The region may have the same or different elastic moduli with the surrounding rock, which is usually referred to as inclusion or inhomogeneity. Stress arching is responsible for many geomechanical problems encountered during production or injection; in addition, it is a crucial parameter in stress estimation during field development. This paper aims to present laboratory measurements of vertical stress arching ratio in a material surrounding the inclusion(inhomogeneity).To the authors’ knowledge, few laboratory experiments have been reported on direct measurement of stress arching. The inclusion is a cylindrical sandstone(44 mm in diameter and 50 mm in height)embedded in a larger cylindrical sandstone(150 mm in diameter and 154 mm in height), both of which are made synthetically. These two parts are separated and sealed by a internal polyurethane sleeve.Vertical stress changes are recorded by a mini hydraulic sensor embedded in surrounding rock. Laboratory results are compared to those obtained by numerical models. These models are checked with analytical formulations. The results of numerical models show a good agreement with laboratory data.The numerical results also indicate that the sensor response is affected by elastic properties of the internal sleeve. According to the sensitivity analysis performed, in the absence of the internal sleeve,properties of the inclusion have significant effects on the surrounding stress arching induced. 展开更多
关键词 Stress arching Laboratory test large-scale sample Synthetic sandstone
下载PDF
Model Testing for Ship Hydroelasticity: A Review and Future Trends 被引量:1
14
作者 焦甲龙 任慧龙 陈超核 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期641-650,共10页
Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are pr... Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed. 展开更多
关键词 ship hydroelasticity wave loads model testing sea trial large-scale model
原文传递
Assessing the effectiveness of the intervention measures of COVID-19 in China based on dynamical method
15
作者 Xiaomeng Wei Mingtao Li +2 位作者 Xin Pei Zhiping Liu Juan Zhang 《Infectious Disease Modelling》 CSCD 2023年第1期159-171,共13页
Normalized interventions were implemented in different cities in China to contain the outbreak of COVID-19 before December 2022.However,the differences in the intensity and timeliness of the implementations lead to di... Normalized interventions were implemented in different cities in China to contain the outbreak of COVID-19 before December 2022.However,the differences in the intensity and timeliness of the implementations lead to differences in final size of the infections.Taking the outbreak of COVID-19 in three representative cities Xi'an,Zhengzhou and Yuzhou in January 2022,as examples,we develop a compartmental model to describe the spread of novel coronavirus and implementation of interventions to assess concretely the effectiveness of Chinese interventions and explore their impact on epidemic patterns.After applying reported human confirmed cases to verify the rationality of the model,we apply the model to speculate transmission trend and length of concealed period at the initial spread phase of the epidemic(they are estimated as 10.5,7.8,8.2 days,respectively),to estimate the range of basic reproduction number(2.9,0.7,1.6),and to define two indexes(transmission rate vt and controlled rate vc)to evaluate the overall effect of the interventions.It is shown that for Zhengzhou,vc is always more than v t with regular interventions,and Xi'an take 8 days to achieve vc>v t twice as long as Yuzhou,which can interpret the fact that the epidemic situation in Xi'an was more severe.By carrying out parameter values,it is concluded that in the early stage,strengthening the precision of close contact tracking and frequency of large-scale nucleic acid testing of non-quarantined population are the most effective on controlling the outbreaks and reducing final size.And,if the close contact tracking strategy is sufficiently implemented,at the late stage largescale nucleic acid testing of non-quarantined population is not essential. 展开更多
关键词 COVID-19 Close contact tracking large-scale nucleic acid testing Dynamics The basic reproduction number Sensitivity analysis
原文传递
Experimental and numerical study on structural performance of reinforced concrete box sewer with localized extreme defect 被引量:1
16
作者 Yuequan Bao Dongyang Feng +2 位作者 Nan Ma Hehua Zhu Timon Rabczuk 《Underground Space》 SCIE EI 2018年第2期166-179,共14页
An experimental and numerical investigation into the structural performance of reinforced concrete box sewers with typical corrosion-related extreme defects localized at the ceiling was conducted.Firstly,during the la... An experimental and numerical investigation into the structural performance of reinforced concrete box sewers with typical corrosion-related extreme defects localized at the ceiling was conducted.Firstly,during the large-scale laboratory test,some key struc-tural responses were captured and evaluated,including the crack width development process(via digital image correlation measurement),ceiling deflection,and material strains of both complete and typical defective boxes.The failure modes and load-carrying mechanism throughout the specimen loading phases were analyzed.Furthermore,the specimen failure process was simulated using a damage-basedfinite element method,and a related parameter sensitivity analysis was performed.The results indicate that the defective ceiling cracked at mid-span under a low load value,but the bending capacity loss can be substituted by two shoulders and carry three tofive times more load before completely collapsing.The simulation matched the lab test qualitatively,and with the suggested set strategy of material parameters,the load-deflection feature curve could provide a practical prediction of the ultimate bearing capacity of the defec-tive sewers,with a 10–15%error on the safe side. 展开更多
关键词 Defective reinforced concrete box sewer Corrosion Structural performance large-scale model test Digital image correlation measurement Failure simulation
原文传递
Geometry and Maximum Width of a Stable Slope Considering the Arching Effect
17
作者 Kun Fang Huiming Tang +2 位作者 Xuexue Su Wentao Shang Shenglong Jia 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1087-1096,共10页
The stability of an arching slope in deformable materials above strong rocks strongly depends on the shape and width of the span.Equations for a free surface problem that incorporate these two parameters were derived ... The stability of an arching slope in deformable materials above strong rocks strongly depends on the shape and width of the span.Equations for a free surface problem that incorporate these two parameters were derived using a simplified two-dimensional arching slope model,and were validated using physical model tests under 1 g and centrifugal conditions.The results are used to estimate the maximum excavation width for a weak claystone slope in a lignite mine,for which we calculate a safety factor of 1.31. 展开更多
关键词 slope failure geological engineering cracked soil slope large-scale model test deformation mechanism arching slope
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部