期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
1
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
下载PDF
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
2
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
下载PDF
Simulation of large-scale numerical substructure in real-time dynamic hybrid testing 被引量:7
3
作者 Zhu Fei Wang Jinting +2 位作者 Jin Feng Zhou Mengxia Gui Yao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期599-609,共11页
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal... A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained. 展开更多
关键词 real-time dynamic hybrid testing large-scale numerical substructure control signal generation finite element simulation
下载PDF
Design of a large-scale model for wind tunnel test of a multiadaptive flap concept
4
作者 Mürüvvet Sinem SICIM DEMIRCI Rosario PECORA Metin Orhan KAYA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期58-80,共23页
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno... The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses. 展开更多
关键词 Morphing structures Smart aircraft Morphing flap Adaptive systems Finger-like ribs Wind tunnel tests large-scale morphing archi-tectures Variable camber airfoil
原文传递
Large-scale experimental study on scour around offshore wind monopiles under irregular waves 被引量:2
5
作者 Song-gui Chen En-yu Gong +2 位作者 Xu Zhao Taro Arikawa Xin Chen 《Water Science and Engineering》 EI CAS CSCD 2022年第1期40-46,共7页
The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the loc... The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour. 展开更多
关键词 Keulegan-Carpenter number large-scale test Scour hole shape Equilibrium scour depth Local scour hole volume
下载PDF
Laboratory large-scale pullout investigation of a new reinforcement ofcomposite geosynthetic strip
6
作者 Mehrdad Tajabadipour Seyed Hamid Lajevardi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1147-1159,共13页
In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a ... In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a geosynthetic strip(GS)and parts of a scrap truck tire as transverse members.The experimental pullout results for the CGS reinforcement were compared with the suggested theoretical equations and ordinary reinforcements,including the GS,the steel strip(SS),and the steel strip with rib(SSR).The pullout test results show that adding three transverse members to the GS reinforcement(CGS3)with S/H?6.6(where S and H are the space and height of the transverse members,respectively)increases pullout resistance by more than 120%,170%,and 50%compared to the GS,the SS,and the SSR,respectively.This result shows that the CGS3(CGS with three transverse members)reinforcement needs at least 55.5%,63%,and 33.3%smaller length compared to the GS,the SS,and the SSR,respectively.In general,implementation of mechanically stabilized earth wall(MSEW)with the proposed strip may help geotechnical engineers prevent costly designs and solve the problem of MSEW implementation in cases where there are limitations of space. 展开更多
关键词 Pullout resistance Composite geosynthetic strip(CGS) Soilegeosynthetic interface Scrap tires large-scale pullout tests
下载PDF
Prediction of fracture initiation in cohesive soils based on data mining modelling and large-scale laboratory verification
7
作者 Weiping Luo Dajun Yuan +3 位作者 Yannick Choy Hing Ng Dalong Jin Ping Lu Teng Wang 《Underground Space》 SCIE EI CSCD 2024年第6期279-300,共22页
Many empirical and analytical methods have been proposed to predict fracturing pressure in cohesive soils.Most of them take into account three to four specific influencing factors and rely on the assumption of a failu... Many empirical and analytical methods have been proposed to predict fracturing pressure in cohesive soils.Most of them take into account three to four specific influencing factors and rely on the assumption of a failure mode.In this study,a novel data-mining approach based on the XGBoost algorithm is investigated for predicting fracture initiation in cohesive soils.This has the advantage of handling multiple influencing factors simultaneously,without pre-determining a failure mode.A dataset of 416 samples consisting of 14 distinct features was herein collected from past studies,and used for developing a regressor and a classifier model for fracturing pressure prediction and failure mode classification respectively.The results show that the intrinsic characteristics of the soil govern the failure mode while the fracturing pressure is more sensitive to the stress state.The XGBoost-based model was also tested against conventional approaches,as well as a similar machine learning algorithm namely random forest model.Additionally,several large-scale triaxial fracturing tests and an in-situ case study were carried out to further verify the generalization ability and applicability of the proposed data mining approach,and the results indicate a superior performance of the XGBoost model. 展开更多
关键词 Fracturing pressure Failure mode Cohesive soil DATA-MINING large-scale tests
原文传递
The role of polyurethane foam compressible layer in the mechanical behaviour of multi-layer yielding supports for deep soft rock tunnels
8
作者 Haibo Wang Fuming Wang +3 位作者 Chengchao Guo Lei Qin Jun Liu Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4554-4569,共16页
The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not... The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels. 展开更多
关键词 Multi-layer yielding supports Polyurethane foam compressible layer Synergistic mechanism large-scale model test Deep soft rock tunnels
下载PDF
Large-scale model test study on the water pressure resistance of construction joints of karst tunnel linings 被引量:1
9
作者 Meng HUANG Mingli HUANG +2 位作者 Ze YANG Yuan SONG Zhien ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第8期1249-1263,共15页
Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnel... Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels.A large-scale model test was designed and conducted,innovatively transforming the external water pressure of the lining construction joint into internal water pressure.The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed,and the reliability of the model test was verified via numerical calculations.The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints.The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop.In addition,the type of waterstop significantly influences the water pressure resistance of lining construction joints.The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop,and both have more advantages than the rubber waterstop.The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results,indicating that the model test results have high accuracy and reliability.This study provides a reference for similar projects and has wide applications. 展开更多
关键词 karst tunnel lining construction joint water pressure resistance large-scale model test numerical calculations
原文传递
Field tests on mechanical characteristics and strength parameters of red-sandstone 被引量:3
10
作者 蒋建清 杨果林 《Journal of Central South University》 SCIE EI CAS 2010年第2期381-387,共7页
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp... Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively. 展开更多
关键词 red-sandstone large-scale field test mechanical characteristic strength parameter
下载PDF
TESTING DIFFERENT CONJUGATE GRADIENT METHODS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION 被引量:10
11
作者 Yu-hongDai QinNi 《Journal of Computational Mathematics》 SCIE CSCD 2003年第3期311-320,共10页
In this paper we test different conjugate gradient (CG) methods for solving large-scale unconstrained optimization problems. The methods are divided in two groups: the first group includes five basic CG methods and th... In this paper we test different conjugate gradient (CG) methods for solving large-scale unconstrained optimization problems. The methods are divided in two groups: the first group includes five basic CG methods and the second five hybrid CG methods. A collection of medium-scale and large-scale test problems are drawn from a standard code of test problems, CUTE. The conjugate gradient methods are ranked according to the numerical results. Some remarks are given. 展开更多
关键词 Conjugate gradient methods large-scale Unconstrained optimization Numerical tests.
原文传递
The Reliability and Operational Test System of a Power Grid with Large-scale Renewable Integration 被引量:5
12
作者 Jianxue Wang Jingdong Wei +1 位作者 Yuchao Zhu Xiuli Wang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第3期704-711,共8页
This paper proposes a reliability and operational test system named XJTU-ROTS2017,characterized by large-scale renewable power integration and long-distance transmission.The test system has 38 nodes,63 lines,15 transf... This paper proposes a reliability and operational test system named XJTU-ROTS2017,characterized by large-scale renewable power integration and long-distance transmission.The test system has 38 nodes,63 lines,15 transformers and 20 generators in three areas,with peak load 10,421 MW and total installed capacity 16050 MW.Electricity primarily transmits from a resource-rich area to a load area,carrying wind/solar power generation.The determination of component parameters and grid topology is based on design manuals and typical practices.The test system can be conveniently applied to reliability evaluation and operation optimization of composite power systems integrating coal/hydro/solar/wind resources.Finally,the extended applications to AC/DC hybrid power systems and interconnected power systems are discussed. 展开更多
关键词 test system large-scale renewable energy RELIABILITY operation XJTU-ROTS2017
原文传递
Large-Scale Test Model of the Progressive Deformation and Failure of Cracked Soil Slopes 被引量:4
13
作者 Zhi Zhou Jiaming Zhang +3 位作者 Fulong Ning Yi Luo Lily Chong Kuangbiao Sun 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1097-1108,共12页
A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking... A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking the Anhui area along the Yangtze River as a field example.The results indicate that(1)during rainfall,the soil around the shallow shrinkage fissures attains transient saturation,and the attendant decrease of matric suction is the primary cause of the shallow slope failure;(2)slope deformation continues during post-rainfall evaporation;(3)if a period of evaporation is followed by heavy rainfall,soil creep is concentrated near the deepest cracks,and two zones of steep gradients in pore pressure form at the crest and toe of the slope.Finally,a saturated zone forms near each crack base and gradually enlarges,eventually forming a continuous saturated layer that induces the slope instability or failure. 展开更多
关键词 slope failure geological engineering cracked soil slope large-scale test progressive deformation
原文传递
Damage mechanism of soil-rock mixture after freeze-thaw cycles 被引量:20
14
作者 ZHOU Zhong XING Kai +1 位作者 YANG Hao WANG Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期13-24,共12页
As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the ... As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly. 展开更多
关键词 soil-rock mixture freeze-thaw cycle large-scale triaxial test strength between soil-rock particles
下载PDF
Shear behavior of coarse aggregates for dam construction under varied stress paths 被引量:9
15
作者 Liu Hanlong Deng An Shen Yang 《Water Science and Engineering》 EI CAS 2008年第1期63-77,共15页
Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stre... Coarse aggregates are the major infrastructure materials of concrete-faced rock-fill dams and are consolidated to bear upper and lateral loads. With the increase of dam height, high confining pressure and complex stress states complicate the shear behavfor of coarse aggregates, and thus impede the high dam's proper construction, operation and maintenance. An experimental program was conducted to study the shear behavior of dam coarse aggregates using a large-scale triaxial shear apparatus. Through triaxial shear tests, the strain-stress behaviors of aggregates were observed under constant confining pressures: 300 kPa, 600 kPa 900 kPa and 1200 kPa. Shear strengths and aggregate breakage characteristics associated with high pressure shear processes are discussed. Stress path tests were conducted to observe and analyze coarse aggregate response under complex stress states. In triaxial shear tests, it was found that peak deviator stresses increase along with confining pressures, whereas the peak principal stress ratios decrease as confining pressures increase With increasing confining pressures, the dilation decreases and the contraction eventually prevails. Initial strength parameters (Poisson's ratio and tangent modulus) show a nonlinear relationship with confining pressures when the pressures are relatively low. Shear strength parameters decrease with increasing confining pressures. The failure envelope lines are convex curves, with clear curvature under low confining pressures. Under moderate confining pressures, dilation is offset by particle breakage. Under high confining pressures, dilation disappears. 展开更多
关键词 coarse aggregate large-scale triaxial shear test high confining pressure stress path stress-strain behavior BREAKAGE
下载PDF
Experimental study on seismic response and progressive failure characteristics of bedding rock slopes 被引量:4
16
作者 Mingdong Zang Guoxiang Yang +3 位作者 Jinyu Dong Shengwen Qi Jianxian He Ning Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1394-1405,共12页
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s... Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides. 展开更多
关键词 Bedding rock slope large-scale shaking table test Seismic response Progressive failure characteristics
下载PDF
A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations 被引量:7
17
作者 Le-Dong Zhu Xiao-Liang Meng +1 位作者 Lin-Qing Du Ming-Chang Ding 《Engineering》 SCIE EI 2017年第6期854-862,共9页
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t... Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy. 展开更多
关键词 Box deck of bridge Vertical vortex-induced vibration Vertical vortex-induced force Simplified nonlinear model Wind-tunnel test large-scale sectional model Synchronous measurement of force and vibration
下载PDF
Decisive Parameters for Backwater Effects Caused by Floating Debris Jams 被引量:4
18
作者 Arnd Hartlieb 《Open Journal of Fluid Dynamics》 2017年第4期475-484,共10页
The dimensional analysis of the backwater effect caused by debris jams results in the Froude number of the approach flow in the initial situation prior to debris jam formation and the debris density as decisive parame... The dimensional analysis of the backwater effect caused by debris jams results in the Froude number of the approach flow in the initial situation prior to debris jam formation and the debris density as decisive parameters. For the more precise detection of the influence of both parameters the results of different hydraulic model test series at the Laboratory of Hydraulic and Water Resources Engineering of the Technical University of Munich concerning debris jams at spillways as well as at racks for the retention of wooden debris were uniformly evaluated. On the one hand a significant increase of the backwater effect with a rising Froude number of the approach flow could be shown. This is in good correlation to recent test results for debris jams at retention racks at the Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss Federal Institute of Technology Zurich. On the other hand a significant increase of the backwater effect could also be shown for a rising debris density. However, the test results also show that significantly different backwater effects can occur in different test runs with identical test conditions. These differences are a result of the randomness of debris jam development, and therefore, a more exact quantification of the dependence of the backwater effect on the Froude number of the approach flow and on the debris density is not considered useful for the present results. 展开更多
关键词 HYDRAULIC Engineering Natural Hazards FLOATING DEBRIS JAMS large-scale HYDRAULIC Model tests
下载PDF
A laboratory study of stress arching around an inclusion due to pore pressure changes
19
作者 Hani Asaei Mahdi Moosavi Mohammad Ali Aghighi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期678-693,共16页
When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressur... When the pore pressure in a porous rock changes, stress arching will occur within the rock and the surrounding region. Stress arching ratio is defined as the total stress changes in the porous rock to the pore pressure change in the region. The region may have the same or different elastic moduli with the surrounding rock, which is usually referred to as inclusion or inhomogeneity. Stress arching is responsible for many geomechanical problems encountered during production or injection; in addition, it is a crucial parameter in stress estimation during field development. This paper aims to present laboratory measurements of vertical stress arching ratio in a material surrounding the inclusion(inhomogeneity).To the authors’ knowledge, few laboratory experiments have been reported on direct measurement of stress arching. The inclusion is a cylindrical sandstone(44 mm in diameter and 50 mm in height)embedded in a larger cylindrical sandstone(150 mm in diameter and 154 mm in height), both of which are made synthetically. These two parts are separated and sealed by a internal polyurethane sleeve.Vertical stress changes are recorded by a mini hydraulic sensor embedded in surrounding rock. Laboratory results are compared to those obtained by numerical models. These models are checked with analytical formulations. The results of numerical models show a good agreement with laboratory data.The numerical results also indicate that the sensor response is affected by elastic properties of the internal sleeve. According to the sensitivity analysis performed, in the absence of the internal sleeve,properties of the inclusion have significant effects on the surrounding stress arching induced. 展开更多
关键词 Stress arching Laboratory test large-scale sample Synthetic sandstone
下载PDF
Behavior of Pile Group with Elevated Cap Subjected to Cyclic Lateral Loads
20
作者 陈云敏 顾明 +3 位作者 陈仁朋 孔令刚 张浙杭 边学成 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期565-578,共14页
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by w... The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures. 展开更多
关键词 pile group large-scale model test cyclic lateral loads stiffness degradation SETTLEMENT
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部