Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos...Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing rea...Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment.This paper aims to address the local minimum problem by employing the proposed boundary gap(BG)based reactive navigation method.Specifically,the narrowest gap extraction algorithm(NGEA)is proposed to eliminate the improper gaps.Meanwhile,we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima.Moreover,in order to enhance the smoothness of generated trajectories,we take the robot dynamics into consideration by using the modified dynamic window approach(DWA).Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.展开更多
This paper presents a new algorithm of path planning for mobile robots, which utilises the characteristics of the obstacle border and fuzzy logical reasoning. The environment topology or working space is described by ...This paper presents a new algorithm of path planning for mobile robots, which utilises the characteristics of the obstacle border and fuzzy logical reasoning. The environment topology or working space is described by the time-variable grid method that can be further described by the moving obstacles and the variation of path safety. Based on the algorithm, a new path planning approach for mobile robots in an unknown environment has been developed. The path planning approach can let a mobile robot find a safe path from the current position to the goal based on a sensor system. The two types of machine learning: advancing learning and exploitation learning or trial learning are explored, and both are applied to the learning of mobile robot path planning algorithm. Comparison with A* path planning approach and various simulation results are given to demonstrate the efficiency of the algorithm. This path planning approach can also be applied to computer games.展开更多
An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbance...An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.展开更多
Unmanned aerial vehicles(UAVs) are increasingly considered in safe autonomous navigation systems to explore unknown environments where UAVs are equipped with multiple sensors to perceive the surroundings. However, how...Unmanned aerial vehicles(UAVs) are increasingly considered in safe autonomous navigation systems to explore unknown environments where UAVs are equipped with multiple sensors to perceive the surroundings. However, how to achieve UAVenabled data dissemination and also ensure safe navigation synchronously is a new challenge. In this paper, our goal is minimizing the whole weighted sum of the UAV’s task completion time while satisfying the data transmission task requirement and the UAV’s feasible flight region constraints. However, it is unable to be solved via standard optimization methods mainly on account of lacking a tractable and accurate system model in practice. To overcome this tough issue,we propose a new solution approach by utilizing the most advanced dueling double deep Q network(dueling DDQN) with multi-step learning. Specifically, to improve the algorithm, the extra labels are added to the primitive states. Simulation results indicate the validity and performance superiority of the proposed algorithm under different data thresholds compared with two other benchmarks.展开更多
The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specifi...The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment.展开更多
To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was resea...To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.展开更多
The southern Laizhou Bay is mainly composed of silt-sandy coasts with diverse landforms, and its marine hydrodynamic environment is sensitive to human activities. Marine hydrodynamic and sedimentary environments of th...The southern Laizhou Bay is mainly composed of silt-sandy coasts with diverse landforms, and its marine hydrodynamic environment is sensitive to human activities. Marine hydrodynamic and sedimentary environments of the study area have changed under the influence of large-scale port projects in recent years. In this paper, the evolution of hydrodynamic environment, deposition rate, and geochemical characteristics were studied based on sediment grain size, element analysis and ^(210)Pb dating of two cores, in order to analyze the influence of Weifang Port on marine environmental evolution, and provide theoretical and practical basis for protecting marine environment in developing marine resources reasonably. Results showed that sediments of the two cores were relatively coarser and mainly composed of silty sand. Sediments above 230 cm in core WF1 and 218 cm in core WF2 were deposited since 1855 when the Yellow River appeared to deposit its sediments within the modern active delta, and the average deposition rate was between 0.3 and 0.5 cm a^(-1). Implement of Weifang Port projects in 1997 and 2007 created great influence on the sedimentary environment evolution in the surrounding waters, and the deposition rate was significantly increased. The average annual deposition rates were 5.1 cm and 3.5 cm in WF1 and WF2 respectively between 1997 and 2007. Content of heavy metals in sediments showed no obvious change in the vertical, indicating that the heavy metals were less affected by human activity and there was no significant accumulation of such metals in the study area.展开更多
This study investigates robot path planning for multiple agents,focusing on the critical requirement that agents can pursue concurrent pathways without collisions.Each agent is assigned a task within the environment t...This study investigates robot path planning for multiple agents,focusing on the critical requirement that agents can pursue concurrent pathways without collisions.Each agent is assigned a task within the environment to reach a designated destination.When the map or goal changes unexpectedly,particularly in dynamic and unknown environments,it can lead to potential failures or performance degradation in various ways.Additionally,priority inheritance plays a significant role in path planning and can impact performance.This study proposes a ConflictBased Search(CBS)approach,introducing a unique hierarchical search mechanism for planning paths for multiple robots.The study aims to enhance flexibility in adapting to different environments.Three scenarios were tested,and the accuracy of the proposed algorithm was validated.In the first scenario,path planning was applied in unknown environments,both stationary and mobile,yielding excellent results in terms of time to arrival and path length,with a time of 2.3 s.In the second scenario,the algorithm was applied to complex environments containing sharp corners and unknown obstacles,resulting in a time of 2.6 s,with the algorithm also performing well in terms of path length.In the final scenario,the multi-objective algorithm was tested in a warehouse environment containing fixed,mobile,and multi-targeted obstacles,achieving a result of up to 100.4 s.Based on the results and comparisons with previous work,the proposed method was found to be highly effective,efficient,and suitable for various environments.展开更多
文摘Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金supported in part by the National Natural Science Foundation of China(61922076,61873252)in part by the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China(161059)。
文摘Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment.This paper aims to address the local minimum problem by employing the proposed boundary gap(BG)based reactive navigation method.Specifically,the narrowest gap extraction algorithm(NGEA)is proposed to eliminate the improper gaps.Meanwhile,we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima.Moreover,in order to enhance the smoothness of generated trajectories,we take the robot dynamics into consideration by using the modified dynamic window approach(DWA).Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.
文摘This paper presents a new algorithm of path planning for mobile robots, which utilises the characteristics of the obstacle border and fuzzy logical reasoning. The environment topology or working space is described by the time-variable grid method that can be further described by the moving obstacles and the variation of path safety. Based on the algorithm, a new path planning approach for mobile robots in an unknown environment has been developed. The path planning approach can let a mobile robot find a safe path from the current position to the goal based on a sensor system. The two types of machine learning: advancing learning and exploitation learning or trial learning are explored, and both are applied to the learning of mobile robot path planning algorithm. Comparison with A* path planning approach and various simulation results are given to demonstrate the efficiency of the algorithm. This path planning approach can also be applied to computer games.
基金This work was supported in part by the National Natural Science Foundation of China(61873151,62073201)in part by the Shandong Provincial Natural Science Foundation of China(ZR2019MF009)+2 种基金the Taishan Scholar Project of Shandong Province of China(tsqn201909078)the Major Scientific and Technological Innovation Project of Shandong Province,China(2019JAZZ020812)in part by the Major Program of Shandong Province Natural Science Foundation,China(ZR2018ZB0419).
文摘An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (No. 61931011)。
文摘Unmanned aerial vehicles(UAVs) are increasingly considered in safe autonomous navigation systems to explore unknown environments where UAVs are equipped with multiple sensors to perceive the surroundings. However, how to achieve UAVenabled data dissemination and also ensure safe navigation synchronously is a new challenge. In this paper, our goal is minimizing the whole weighted sum of the UAV’s task completion time while satisfying the data transmission task requirement and the UAV’s feasible flight region constraints. However, it is unable to be solved via standard optimization methods mainly on account of lacking a tractable and accurate system model in practice. To overcome this tough issue,we propose a new solution approach by utilizing the most advanced dueling double deep Q network(dueling DDQN) with multi-step learning. Specifically, to improve the algorithm, the extra labels are added to the primitive states. Simulation results indicate the validity and performance superiority of the proposed algorithm under different data thresholds compared with two other benchmarks.
文摘The observed phenomena in real sound environment system often contain uncertainty such as the additional external noise with unknown statistics. Furthermore, there is complex nonlinear relationship between the specific signal and the observations, and it cannot be exactly expressed in any definite functional form. In these situations, it is one of reasonable analysis methods to treat the objective sound environment system as a fuzzy system. In this study, a state estimation method for a specific signal under the existence of an unknown observation mechanism and external noise of unknown statistics is proposed by introducing fuzzy inference. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to the actually observed data in the sound environment.
文摘To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.
基金financially supported by the Marine Commonweal Scientific Research Foundation (Grant No. 201005009)the Basic Scientific Fund for National Public Research Institutes of China (Grant No. 2015G08)
文摘The southern Laizhou Bay is mainly composed of silt-sandy coasts with diverse landforms, and its marine hydrodynamic environment is sensitive to human activities. Marine hydrodynamic and sedimentary environments of the study area have changed under the influence of large-scale port projects in recent years. In this paper, the evolution of hydrodynamic environment, deposition rate, and geochemical characteristics were studied based on sediment grain size, element analysis and ^(210)Pb dating of two cores, in order to analyze the influence of Weifang Port on marine environmental evolution, and provide theoretical and practical basis for protecting marine environment in developing marine resources reasonably. Results showed that sediments of the two cores were relatively coarser and mainly composed of silty sand. Sediments above 230 cm in core WF1 and 218 cm in core WF2 were deposited since 1855 when the Yellow River appeared to deposit its sediments within the modern active delta, and the average deposition rate was between 0.3 and 0.5 cm a^(-1). Implement of Weifang Port projects in 1997 and 2007 created great influence on the sedimentary environment evolution in the surrounding waters, and the deposition rate was significantly increased. The average annual deposition rates were 5.1 cm and 3.5 cm in WF1 and WF2 respectively between 1997 and 2007. Content of heavy metals in sediments showed no obvious change in the vertical, indicating that the heavy metals were less affected by human activity and there was no significant accumulation of such metals in the study area.
文摘This study investigates robot path planning for multiple agents,focusing on the critical requirement that agents can pursue concurrent pathways without collisions.Each agent is assigned a task within the environment to reach a designated destination.When the map or goal changes unexpectedly,particularly in dynamic and unknown environments,it can lead to potential failures or performance degradation in various ways.Additionally,priority inheritance plays a significant role in path planning and can impact performance.This study proposes a ConflictBased Search(CBS)approach,introducing a unique hierarchical search mechanism for planning paths for multiple robots.The study aims to enhance flexibility in adapting to different environments.Three scenarios were tested,and the accuracy of the proposed algorithm was validated.In the first scenario,path planning was applied in unknown environments,both stationary and mobile,yielding excellent results in terms of time to arrival and path length,with a time of 2.3 s.In the second scenario,the algorithm was applied to complex environments containing sharp corners and unknown obstacles,resulting in a time of 2.6 s,with the algorithm also performing well in terms of path length.In the final scenario,the multi-objective algorithm was tested in a warehouse environment containing fixed,mobile,and multi-targeted obstacles,achieving a result of up to 100.4 s.Based on the results and comparisons with previous work,the proposed method was found to be highly effective,efficient,and suitable for various environments.