The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progressi...BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progression of hepatitis B.AIM To study the relation between rs2856718 of HLA-DQ,rs3077,and rs9277535 of HLA-DP,hepatitis B virus(HBV)-related cirrhosis,and hepatocellular carcinoma(HCC).METHODS In this case-control study,the genotypes of these single nucleotide polymorphisms(SNPs)were screened in 315 healthy controls,471 chronic hepatitis B patients,250 patients with HBV-related liver cirrhosis,and 251 patients with HCC using TaqMan real-time PCR.We conducted Hardy-Weinberg equilibrium and linkage disequilibrium tests on the genotype distributions of rs2856718,rs3077,and rs9277535 before hierarchical clustering analysis to build the complex interaction between the markers in each patient group.RESULTS The physical distance separating these SNPs was 29816 kB with the disequilibrium(D’)values ranging from 0.07 to 0.34.The close linkage between rs3077 and rs9277535 was attributed to a distance of 21 kB.The D’value decreased from moderate in the healthy control group(D’=0.50,P<0.05)to weak in the hepatic disease group(D’<0.3,P<0.05).In a combination of the three variants rs2856718,rs3077,and rs9277535,the A allele decreased hepatic disease risk[A-A-A haplotype,risk ratio(RR)=0.44(0.14;1.37),P<0.05].The G allele had the opposite effect[G-A/G-G haplotype,RR=1.12(1.02;1.23),P<0.05].In liver cancer cases,the A-A-A/G haplotype increased the risk of HCC by 1.58(P<0.05).CONCLUSION Rs9277535 affects liver fibrosis progression due to HBV infection,while rs3077 is associated with a risk of HBVrelated HCC.The link between rs2856718,rs3077,and rs9277535 and disease risk was determined using a multiclustering analysis.展开更多
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a...Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.展开更多
This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion w...This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.展开更多
A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck...A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time.Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.展开更多
Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a ...Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states.Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a closedown period that evolves from the steady state period. Finally,industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.展开更多
The"three shells"cooperative support technology was proposed herein according to both the large deformation of the rock surrounding large-section chambers in deep mines and the precarious stability of the su...The"three shells"cooperative support technology was proposed herein according to both the large deformation of the rock surrounding large-section chambers in deep mines and the precarious stability of the support structures therein.The development range of the plastic zone in the surrounding rock was controlled by a stress shell to reduce the difficulty of controlling the surrounding rock.Additionally,the residual strength of the rock mass in the plastic zone and the self-bearing capacity of the surrounding rock were improved by a reinforced load-bearing shell.Furthermore,a passive load-bearing shell could restore the triaxial stress state of the surrounding rock on the free surface,reduce the influence of the external environment on the surrounding rock,and reinforce the surrounding rock with the strength of the shell.Reasonable layouts of large-section chambers were determined by analyzing the control effect of the stress shell on the surrounding rock under three kinds of in situ stress fields.The orthogonal test method was applied to reveal the influences of different support parameters in the reinforced loadbearing shell and passive load-bearing shell on the surrounding rock stability.The surrounding rock control effect of the"three shells"collaborative support technology was analyzed through numerical simulation and field monitoring.The results show that the maximum displacement between the roof and floor of the coal preparation chamber in the Xinjulong coal mine was approximately 48 mm,and the maximum displacement between its two sides was approximately 65 mm,indicating that the technology proposed herein could meet the long-term control requirements of the surrounding rock stability for large-section chambers in deep mines.展开更多
As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required i...As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required in chemical vapor deposition, coating processes, etc. They increase scheduling complexity in cluster tools. In this paper, we focus on scheduling single-arm multi-cluster tools with chamber cleaning operations subject to wafer residency time constraints. When a chamber is being cleaned, it can be viewed as processing a virtual wafer. In this way, chamber cleaning operations can be performed while wafer residency time constraints for real wafers are not violated. Based on such a method, we present the necessary and sufficient conditions to analytically check whether a single-arm multi-cluster tool can be scheduled with a chamber cleaning operation and wafer residency time constraints. An algorithm is proposed to adjust the cycle time for a cleaning operation that lasts a long cleaning time.Meanwhile, algorithms for a feasible schedule are also derived.And an algorithm is presented for operating a multi-cluster tool back to a steady state after the cleaning. Illustrative examples are given to show the application and effectiveness of the proposed method.展开更多
Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on sp...Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.展开更多
Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios(H/D)because of complex geological conditions(core disking or developed fractures),which ma...Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios(H/D)because of complex geological conditions(core disking or developed fractures),which makes further standard specimen preparation for mechanical evaluation of reservoirs difficult.In multi-cluster hydraulic fracturing,shale reservoirs between planes of hydraulic fractures with different lengths could be simplified to have different H/D ratios.Discovering the effect of H/D on the mechanical characteristics of shale specimens with different bedding orientations will support mechanical evaluation tests of reservoirs based on disked geological cores and help to optimize multicluster fracturing programs.In this study,we performed uniaxial compression tests and acoustic emission(AE)monitoring on cylindrical Longmaxi shale specimens under five bedding orientations and four H/D ratios.The experimental results showed that both the H/D-dependent mechanical properties and AE parameters demonstrated significant anisotropy.Increasing H/D did not change the uniaxial compressive strength(UCS)evolution versus bedding orientation,demonstrating a V-shaped relationship,but enhanced the curve shape.The stress level of crack damage for the specimens significantly increased with increasing H/D,excluding the specimens with a bedding orientation of 0°.With increasing H/D,the cumulative AE counts of the specimens with each bedding orientation tended to exhibit a stepped jump against the loading time.The proportion of low-average-frequency AE signals(below 100 kHz)in specimens with bedding orientations of 45°and 60°increased to over 70%by increasing H/D,but it only increased to 40%in specimens with bedding orientations of 0°,30°,and 90°.Finally,an empirical model that can reveal the effect of H/D on anisotropic UCS of shale reservoir was proposed,the anisotropic proportion of tensile and shear failure cracks in specimens under four H/D ratios was classified based on the AE data,and the effect of H/D on the anisotropic crack growth of specimens was discussed.展开更多
Refracturing is an importa nt technique to tap the potential of reservoirs and boost production in depleted oil and gas fields.However,fracture propagation during refracturing,including both conventional refracturing ...Refracturing is an importa nt technique to tap the potential of reservoirs and boost production in depleted oil and gas fields.However,fracture propagation during refracturing,including both conventional refracturing and temporary-plugging refracturing remains poorly understood,especially for cases with non-uniform distribution of formation pressure due to long-term oil production and water injection.Therefore,taking pilot tests of refracturing with sidetracking horizontal wells in tight reservoirs in the Changqing Oilfield,China as an example,we establish a three-dimensional numerical model of conventional refracturing and a numerical model of temporary-plugging refracturing based on the discrete lattice method.Non-uniform distributions of formation pressure are imported in these models.We discuss the effects of key operating parameters such as injection rate,cluster spacing,and number of clusters on the propagation of multi-cluster fractures for conventional refracturing.For temporaryplugging refracturing,we examine the impacts of controlling factors such as the timing and number of temporary plugging on fracture propagation.In addition,we analyze a field case of temporaryplugging refracturing using well P3 in the Changqing Oilfield.The results show that fractures during re fracturing tend to propagate preferentially and dominantly in the depleted areas.Improved stimulation effect can be obtained with an optimal injection rate and a critical cluster spacing.The proposed model of temporary-plugging refracturing can well describe the temporary plugging of dominant existingfractures and the creation of new-fractures after fracturing fluid is forced to divert into other clusters from previous dominant clusters.Multiple temporary plugging can improve the balanced propagation of multi-cluster fractures and obtain the maximum fracture area.The established numerical model and research results provide theoretical guidance for the design and optimization of key operating parameters for refracturing,especially for temporary-plugging refracturing.展开更多
Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of mul...Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of multiple fractures during ITPF are not clear due that the existing numerical models cannot capture the effects of perforation plugging.In this paper,a new three-dimensional FEM based on CZM was developed to investigate multiple planar fracture propagation considering perforation plugging during ITPF.Meanwhile,the fluid pipe element and its subroutine were first developed to realize the flux partitioning before or after perforation plugging.The results showed that the perforation plugging changed the original distribution of the number of perforations in each fracture,thus changing the flux partitioning after perforation plugging,which could eliminate the effect of stress interference between multiple fractures and promote a uniform fluid distribution.The standard deviation of fluid distribution in the perforation plugging case was only 8.48%of that in the non-diversion case.Furthermore,critical plugging parameters have been investigated quantitatively.Specifically,injecting more diverters will create a higher fluid pressure rise in the wellbore,which will increase the risk of wellbore integrity.Comprehensively considering pressure rise and fluid distribution,the number of diverters should be 50%of the total number of perforations(N_(pt)),whose standard deviation of fluid distribution of multiple fractures was lower than those in the cases of injecting 10%N_(pt),30%N_(pt)and 70%N_(pt).The diverters should be injected at an appropriate timing,i.e.40%or 50%of the total fracturing time(tft),whose standard deviation of the fluid distribution was only about 20%of standard deviations in the cases of injecting at20%tftor 70%tft.A single injection with all diverters can maintain high bottom-hole pressure for a longer period and promote a more uniform fluid distribution.The standard deviation of the fluid distribution in the case of a single injection was 43.62%-55.41%of the other cases with multiple injection times.This study provides a meaningful perspective and some optimal plugging parameters on the field design during IPTF.展开更多
This paper analyzes the multi-cluster flocking behavior of a Cucker-Smale model involving delays and a short-range communication weight.In each sub-flocking group,the velocity between agents is alignment and the posit...This paper analyzes the multi-cluster flocking behavior of a Cucker-Smale model involving delays and a short-range communication weight.In each sub-flocking group,the velocity between agents is alignment and the position locates at a limited domain;but in different sub-flocking groups,the position between agents is unbounded.By constructing dissipative differential inequalities of subensembles together with Lyapunov functional methods,the authors provide the sufficient condition for the multi-cluster flocking emerging.The sufficient condition includes the estimation of the range of coupling strength and the upper bound of time delay.As a result,the authors show that the coupling strength among agents and initial threshold value determine the multi-cluster flocking behavior of the delayed Cucker-Smale model.展开更多
To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during la...To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly.展开更多
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金Supported by National Foundation for Science and Technology Development(NAFOSTED)-Ministry of Science and Technology,Viet Nam,No.108.02-2019.307.
文摘BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progression of hepatitis B.AIM To study the relation between rs2856718 of HLA-DQ,rs3077,and rs9277535 of HLA-DP,hepatitis B virus(HBV)-related cirrhosis,and hepatocellular carcinoma(HCC).METHODS In this case-control study,the genotypes of these single nucleotide polymorphisms(SNPs)were screened in 315 healthy controls,471 chronic hepatitis B patients,250 patients with HBV-related liver cirrhosis,and 251 patients with HCC using TaqMan real-time PCR.We conducted Hardy-Weinberg equilibrium and linkage disequilibrium tests on the genotype distributions of rs2856718,rs3077,and rs9277535 before hierarchical clustering analysis to build the complex interaction between the markers in each patient group.RESULTS The physical distance separating these SNPs was 29816 kB with the disequilibrium(D’)values ranging from 0.07 to 0.34.The close linkage between rs3077 and rs9277535 was attributed to a distance of 21 kB.The D’value decreased from moderate in the healthy control group(D’=0.50,P<0.05)to weak in the hepatic disease group(D’<0.3,P<0.05).In a combination of the three variants rs2856718,rs3077,and rs9277535,the A allele decreased hepatic disease risk[A-A-A haplotype,risk ratio(RR)=0.44(0.14;1.37),P<0.05].The G allele had the opposite effect[G-A/G-G haplotype,RR=1.12(1.02;1.23),P<0.05].In liver cancer cases,the A-A-A/G haplotype increased the risk of HCC by 1.58(P<0.05).CONCLUSION Rs9277535 affects liver fibrosis progression due to HBV infection,while rs3077 is associated with a risk of HBVrelated HCC.The link between rs2856718,rs3077,and rs9277535 and disease risk was determined using a multiclustering analysis.
基金The work is supported by the Sub-Project of“Research on Key Technologies and Equipment of Reservoir Stimulation”of China National Petroleum Corporation Post–14th Five-Year Plan Forward-Looking Major Science and Technology Project“Research on New Technology of Monitoring and Diagnosis of Horizontal Well Hydraulic Fracture Network Distribution Pattern”(2021DJ4502).
文摘Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.
基金Supported by the National Natural Science Foundation of China(51974332).
文摘This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.
基金supported in part by Science and Technology Development Fund(FDCT)of Macao(106/2016/A3)the National Natural Science Foundation of China(U1401240)the Delta Electronics Inc and the National Research Foundation(NRF)Singapore under the Corp Lab@University Scheme
文摘A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time.Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.
基金the National Natural Science Foundation of China(61673123,61803397)the Science and Technology Development Fund(FDCT)of Macao(106/2016/A3,005/2018/A1,011/2017/A,0017/2019/A1)
文摘Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states.Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a closedown period that evolves from the steady state period. Finally,industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2019XKQYMS61).
文摘The"three shells"cooperative support technology was proposed herein according to both the large deformation of the rock surrounding large-section chambers in deep mines and the precarious stability of the support structures therein.The development range of the plastic zone in the surrounding rock was controlled by a stress shell to reduce the difficulty of controlling the surrounding rock.Additionally,the residual strength of the rock mass in the plastic zone and the self-bearing capacity of the surrounding rock were improved by a reinforced load-bearing shell.Furthermore,a passive load-bearing shell could restore the triaxial stress state of the surrounding rock on the free surface,reduce the influence of the external environment on the surrounding rock,and reinforce the surrounding rock with the strength of the shell.Reasonable layouts of large-section chambers were determined by analyzing the control effect of the stress shell on the surrounding rock under three kinds of in situ stress fields.The orthogonal test method was applied to reveal the influences of different support parameters in the reinforced loadbearing shell and passive load-bearing shell on the surrounding rock stability.The surrounding rock control effect of the"three shells"collaborative support technology was analyzed through numerical simulation and field monitoring.The results show that the maximum displacement between the roof and floor of the coal preparation chamber in the Xinjulong coal mine was approximately 48 mm,and the maximum displacement between its two sides was approximately 65 mm,indicating that the technology proposed herein could meet the long-term control requirements of the surrounding rock stability for large-section chambers in deep mines.
基金supported in part by the Natural Science Foundation of Guangdong Province,China (2022A1515011310)。
文摘As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required in chemical vapor deposition, coating processes, etc. They increase scheduling complexity in cluster tools. In this paper, we focus on scheduling single-arm multi-cluster tools with chamber cleaning operations subject to wafer residency time constraints. When a chamber is being cleaned, it can be viewed as processing a virtual wafer. In this way, chamber cleaning operations can be performed while wafer residency time constraints for real wafers are not violated. Based on such a method, we present the necessary and sufficient conditions to analytically check whether a single-arm multi-cluster tool can be scheduled with a chamber cleaning operation and wafer residency time constraints. An algorithm is proposed to adjust the cycle time for a cleaning operation that lasts a long cleaning time.Meanwhile, algorithms for a feasible schedule are also derived.And an algorithm is presented for operating a multi-cluster tool back to a steady state after the cleaning. Illustrative examples are given to show the application and effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China,No.32270768,No.82273970,No.32070726,and No.82370715National Key R&D Program of China,No.2023YFC2507904the Innovation Group Project of Hubei Province,No.2023AFA026.
文摘Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.
基金funded by the National Natural Science Foundation of China(Grant Nos.51927808,52174098 and 52374151).
文摘Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios(H/D)because of complex geological conditions(core disking or developed fractures),which makes further standard specimen preparation for mechanical evaluation of reservoirs difficult.In multi-cluster hydraulic fracturing,shale reservoirs between planes of hydraulic fractures with different lengths could be simplified to have different H/D ratios.Discovering the effect of H/D on the mechanical characteristics of shale specimens with different bedding orientations will support mechanical evaluation tests of reservoirs based on disked geological cores and help to optimize multicluster fracturing programs.In this study,we performed uniaxial compression tests and acoustic emission(AE)monitoring on cylindrical Longmaxi shale specimens under five bedding orientations and four H/D ratios.The experimental results showed that both the H/D-dependent mechanical properties and AE parameters demonstrated significant anisotropy.Increasing H/D did not change the uniaxial compressive strength(UCS)evolution versus bedding orientation,demonstrating a V-shaped relationship,but enhanced the curve shape.The stress level of crack damage for the specimens significantly increased with increasing H/D,excluding the specimens with a bedding orientation of 0°.With increasing H/D,the cumulative AE counts of the specimens with each bedding orientation tended to exhibit a stepped jump against the loading time.The proportion of low-average-frequency AE signals(below 100 kHz)in specimens with bedding orientations of 45°and 60°increased to over 70%by increasing H/D,but it only increased to 40%in specimens with bedding orientations of 0°,30°,and 90°.Finally,an empirical model that can reveal the effect of H/D on anisotropic UCS of shale reservoir was proposed,the anisotropic proportion of tensile and shear failure cracks in specimens under four H/D ratios was classified based on the AE data,and the effect of H/D on the anisotropic crack growth of specimens was discussed.
基金funded by the National Natural Science Foundation of China(41772286,42077247)the Fundamental Research Funds for the Central UniversitiesOpen Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Z020009)。
文摘Refracturing is an importa nt technique to tap the potential of reservoirs and boost production in depleted oil and gas fields.However,fracture propagation during refracturing,including both conventional refracturing and temporary-plugging refracturing remains poorly understood,especially for cases with non-uniform distribution of formation pressure due to long-term oil production and water injection.Therefore,taking pilot tests of refracturing with sidetracking horizontal wells in tight reservoirs in the Changqing Oilfield,China as an example,we establish a three-dimensional numerical model of conventional refracturing and a numerical model of temporary-plugging refracturing based on the discrete lattice method.Non-uniform distributions of formation pressure are imported in these models.We discuss the effects of key operating parameters such as injection rate,cluster spacing,and number of clusters on the propagation of multi-cluster fractures for conventional refracturing.For temporaryplugging refracturing,we examine the impacts of controlling factors such as the timing and number of temporary plugging on fracture propagation.In addition,we analyze a field case of temporaryplugging refracturing using well P3 in the Changqing Oilfield.The results show that fractures during re fracturing tend to propagate preferentially and dominantly in the depleted areas.Improved stimulation effect can be obtained with an optimal injection rate and a critical cluster spacing.The proposed model of temporary-plugging refracturing can well describe the temporary plugging of dominant existingfractures and the creation of new-fractures after fracturing fluid is forced to divert into other clusters from previous dominant clusters.Multiple temporary plugging can improve the balanced propagation of multi-cluster fractures and obtain the maximum fracture area.The established numerical model and research results provide theoretical guidance for the design and optimization of key operating parameters for refracturing,especially for temporary-plugging refracturing.
基金financially supported by the National Natural Science Foundation of China(No.52174045,No.52104011)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01B77)。
文摘Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of multiple fractures during ITPF are not clear due that the existing numerical models cannot capture the effects of perforation plugging.In this paper,a new three-dimensional FEM based on CZM was developed to investigate multiple planar fracture propagation considering perforation plugging during ITPF.Meanwhile,the fluid pipe element and its subroutine were first developed to realize the flux partitioning before or after perforation plugging.The results showed that the perforation plugging changed the original distribution of the number of perforations in each fracture,thus changing the flux partitioning after perforation plugging,which could eliminate the effect of stress interference between multiple fractures and promote a uniform fluid distribution.The standard deviation of fluid distribution in the perforation plugging case was only 8.48%of that in the non-diversion case.Furthermore,critical plugging parameters have been investigated quantitatively.Specifically,injecting more diverters will create a higher fluid pressure rise in the wellbore,which will increase the risk of wellbore integrity.Comprehensively considering pressure rise and fluid distribution,the number of diverters should be 50%of the total number of perforations(N_(pt)),whose standard deviation of fluid distribution of multiple fractures was lower than those in the cases of injecting 10%N_(pt),30%N_(pt)and 70%N_(pt).The diverters should be injected at an appropriate timing,i.e.40%or 50%of the total fracturing time(tft),whose standard deviation of the fluid distribution was only about 20%of standard deviations in the cases of injecting at20%tftor 70%tft.A single injection with all diverters can maintain high bottom-hole pressure for a longer period and promote a more uniform fluid distribution.The standard deviation of the fluid distribution in the case of a single injection was 43.62%-55.41%of the other cases with multiple injection times.This study provides a meaningful perspective and some optimal plugging parameters on the field design during IPTF.
基金supported by the National Natural Science Foundation of China under Grant Nos.11671011and 11428101。
文摘This paper analyzes the multi-cluster flocking behavior of a Cucker-Smale model involving delays and a short-range communication weight.In each sub-flocking group,the velocity between agents is alignment and the position locates at a limited domain;but in different sub-flocking groups,the position between agents is unbounded.By constructing dissipative differential inequalities of subensembles together with Lyapunov functional methods,the authors provide the sufficient condition for the multi-cluster flocking emerging.The sufficient condition includes the estimation of the range of coupling strength and the upper bound of time delay.As a result,the authors show that the coupling strength among agents and initial threshold value determine the multi-cluster flocking behavior of the delayed Cucker-Smale model.
基金Supported by China National Science and Technology Major Project(2016ZX05023,2017ZX05013-005)
文摘To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly.