Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra...Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.展开更多
In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication q...In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.展开更多
无线Mesh网络(Wireless Mesh network, WMN)中,链路拥塞会导致较长的传输时延和排队时间,因此将链路负载均衡与服务质量结合起来一直是研究热点.本文针对多目标路由优化管理的关键问题,将路由问题表述为整数线性规划(Integer linear pro...无线Mesh网络(Wireless Mesh network, WMN)中,链路拥塞会导致较长的传输时延和排队时间,因此将链路负载均衡与服务质量结合起来一直是研究热点.本文针对多目标路由优化管理的关键问题,将路由问题表述为整数线性规划(Integer linear programming, ILP)模型,并将无线Mesh网络与软件定义网络(Software defined network, SDN)结合,设计了适应于SD-WMN架构的多目标函数、约束条件以及整体的网络优化模型,此外,由于该整数线性规划模型是NP完全的,本文将改进的人工蜂群的启发式优化算法引入到路由优化算法中,以获得源节点和目的节点之间传输流量的理想路径.本文所提出方法在Mininet网络模拟工具中的仿真结果证明了该算法的有效性,与OSPF、SDNR以及遗传蚁群优化(G-ACO)相比,所提出方法在丢包率、往返时间和负载均衡方面均有不错的改善.展开更多
The most commonly used material for constructing complete dentures is polymethyl methacrylate (PMMA). However, the strength characteristics of PMMA, such as impact strength and fatigue strength, are poor, and fracturi...The most commonly used material for constructing complete dentures is polymethyl methacrylate (PMMA). However, the strength characteristics of PMMA, such as impact strength and fatigue strength, are poor, and fracturing of PMMA dentures is a common problem in prosthodontic practice. Reinforcing PMMA with various materials, such as carbon fibers, glass fibers (fiberglass), and ultrahigh modulus polyethylene fibers, has been suggested to strengthen the denture-base material. A common problem encountered when packing the resin on these specimens is fiber slippage beyond the denture edges. The present study proposes an alternative method of incorporating fiber meshes into complete dentures, whereby a thin filament of self-polymerizing resin at the perimeter of the fiber mesh is produced, giving a clear and stable shape to the mesh that fits the upper jaw cast. During placement of the shaped mesh on the cast, a positive-negative relationship is created between the mesh and cast, which immobilizes the mesh during the incorporation process.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulat...A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies.展开更多
A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The e...A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.展开更多
基金National Natural Science Foundation of ChinaGrant/Award Number:41972316+3 种基金Sichuan Science&Technology FoundationGrant/Award Number:2022YFSY0007Joint Funds of the National Natural Science Foundation of ChinaGrant/Award Number:U2344226。
文摘Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.
基金sponsored by the National Natural Science Foundation,Youth Foundation of China,Grant/Award Number:51607146Sichuan Natural Sciences Fund,Grant/Award Number:2023NSFSC0295。
文摘In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.
文摘无线Mesh网络(Wireless Mesh network, WMN)中,链路拥塞会导致较长的传输时延和排队时间,因此将链路负载均衡与服务质量结合起来一直是研究热点.本文针对多目标路由优化管理的关键问题,将路由问题表述为整数线性规划(Integer linear programming, ILP)模型,并将无线Mesh网络与软件定义网络(Software defined network, SDN)结合,设计了适应于SD-WMN架构的多目标函数、约束条件以及整体的网络优化模型,此外,由于该整数线性规划模型是NP完全的,本文将改进的人工蜂群的启发式优化算法引入到路由优化算法中,以获得源节点和目的节点之间传输流量的理想路径.本文所提出方法在Mininet网络模拟工具中的仿真结果证明了该算法的有效性,与OSPF、SDNR以及遗传蚁群优化(G-ACO)相比,所提出方法在丢包率、往返时间和负载均衡方面均有不错的改善.
文摘The most commonly used material for constructing complete dentures is polymethyl methacrylate (PMMA). However, the strength characteristics of PMMA, such as impact strength and fatigue strength, are poor, and fracturing of PMMA dentures is a common problem in prosthodontic practice. Reinforcing PMMA with various materials, such as carbon fibers, glass fibers (fiberglass), and ultrahigh modulus polyethylene fibers, has been suggested to strengthen the denture-base material. A common problem encountered when packing the resin on these specimens is fiber slippage beyond the denture edges. The present study proposes an alternative method of incorporating fiber meshes into complete dentures, whereby a thin filament of self-polymerizing resin at the perimeter of the fiber mesh is produced, giving a clear and stable shape to the mesh that fits the upper jaw cast. During placement of the shaped mesh on the cast, a positive-negative relationship is created between the mesh and cast, which immobilizes the mesh during the incorporation process.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
文摘A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies.
基金the National Natural Science Foundation of China(11901555,11871448,12001009).
文摘A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.