Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its...Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.展开更多
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra...Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.展开更多
Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to...Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.展开更多
Cerebral cavernous malformations are a rare and congenital vascular malformation that can present as a challenge in neurosurgical management. The term “giant cerebral cavernous malformations” still does not have a c...Cerebral cavernous malformations are a rare and congenital vascular malformation that can present as a challenge in neurosurgical management. The term “giant cerebral cavernous malformations” still does not have a clear definition in the literature, with a wide variety of results. It is known, however, that there is an association between the size of the cavernoma and postoperative sequelae, especially in those with a size greater than 3 cm in its largest diameter. We present a case report of resection of a giant brain cavernoma measuring approximately 8 cm in its largest diameter, emphasizing on clinical presentation, diagnoses and postoperative evolution. Additionally, we performed a comprehensive review of the existing literature on the subject, addressing the epidemiology, pathophysiology, diagnostic methods, treatment options, and prognosis associated with this condition.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp...Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.展开更多
BACKGROUND Direct carotid cavernous fistulas(CCFs)are typically the result of a severe traumatic brain injury.High-flow arteriovenous shunts secondary to rupture of an intracavernous aneurysm,resulting in direct CCFs,...BACKGROUND Direct carotid cavernous fistulas(CCFs)are typically the result of a severe traumatic brain injury.High-flow arteriovenous shunts secondary to rupture of an intracavernous aneurysm,resulting in direct CCFs,are rare.The use of a pipeline embolization device in conjunction with coils and Onyx glue for treatment of direct high-flow CCF resulting from ruptured cavernous carotid artery aneurysm in a clinical setting is not well documented.CASE SUMMARY A 58-year-old woman presented to our department with symptoms of blepharoptosis and intracranial bruits for 1 wk.During physical examination,there was right eye exophthalmos and ocular motor palsy.The rest of the neurological examination was clear.Notably,the patient had no history of head injury.The patient was treated with a pipeline embolization device in the ipsilateral internal carotid artery across the fistula.Coils and Onyx were placed through the femoral venous route,followed by placement of the pipeline embolization device with assistance from a balloon-coiling technique.No intraoperative or perioperative complications occurred.Preoperative symptoms of bulbar hyperemia and bruits subsided immediately after the operation.CONCLUSION Pipeline embolization device in conjunction with coiling and Onyx may be a safe and effective approach for direct CCFs.展开更多
BACKGROUND Colorectal cavernous hemangioma is a rare vascular malformation resulting in recurrent lower gastrointestinal hemorrhage,and can be misinterpreted as colitis.Surgical resection is currently the mainstay of ...BACKGROUND Colorectal cavernous hemangioma is a rare vascular malformation resulting in recurrent lower gastrointestinal hemorrhage,and can be misinterpreted as colitis.Surgical resection is currently the mainstay of treatment,with an emphasis on sphincter preservation.CASE SUMMARY We present details of two young patients with a history of persistent hematochezia diagnosed with colorectal cavernous hemangioma by endoscopic ultrasound(EUS).Cavernous hemangioma was relieved by several EUS-guided lauromacrogol injections and the patients achieved favorable clinical prognosis.CONCLUSION Multiple sequential EUS-guided injections of lauromacrogol is a safe,effective,cost-efficient,and minimally invasive alternative for colorectal cavernous hemangioma.展开更多
Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns...Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China.展开更多
BACKGROUND Lymphangiomas in the gastrointestinal tract are extremely rare in adults.As a benign lesion,small intestine lymphangiomas often remain asymptomatic and pose challenges for definitive diagnosis.However,lymph...BACKGROUND Lymphangiomas in the gastrointestinal tract are extremely rare in adults.As a benign lesion,small intestine lymphangiomas often remain asymptomatic and pose challenges for definitive diagnosis.However,lymphangiomas can give rise to complications such as abdominal pain,bleeding,volvulus,and intussusception.Here,we report a case of jejunal cavernous lymphangioma that presented with intermittent melena and refractory anemia in a male adult.CASE SUMMARY A 66-year-old man presented with intermittent melena,fatigue and refractory anemia nine months prior.Esophagogastroduodenoscopy and colonoscopy were performed many times and revealed no apparent bleeding.Conservative management,including transfusion,hemostasis,gastric acid secretion inhibition and symptomatic treatment,was performed,but the lesions tended to recur shortly after surgery.Ultimately,the patient underwent capsule endoscopy,which revealed a more than 10 cm lesion accompanied by active bleeding.After singleballoon enteroscopy and biopsy,a diagnosis of jejunal cavernous lymphangioma was confirmed,and the patient underwent surgical resection.No complications or recurrences were observed postoperatively.CONCLUSION Jejunal cavernous lymphangioma should be considered a cause of obscure gastrointestinal bleeding.Capsule endoscopy and single-balloon enteroscopy can facilitate diagnosis.Surgical resection is an effective management method.展开更多
BACKGROUND Patients with giant intracranial aneurysms(GIAs)are at a high risk of rupture,morbidity,and mortality even after surgical or endovascular treatment.We described a case of a spontaneously occluded GIA second...BACKGROUND Patients with giant intracranial aneurysms(GIAs)are at a high risk of rupture,morbidity,and mortality even after surgical or endovascular treatment.We described a case of a spontaneously occluded GIA secondary to gradual growth of the GIA,continuously progressed aneurysmal thrombosis,complete aneurysmal calcification and complete occlusion of the parent artery-the right internal carotid artery(RICA).CASE SUMMARY A 72-year-old female patient complained of sudden pain in her right eye upon admission to our hospital.She had been diagnosed with a GIA[30 mm(axial)×38 mm(coronal)×28 mm(sagittal)]containing an aneurysmal thrombus located in the cavernous sinus segment of RICA diagnosed by magnetic resonance imaging(MRI),enhanced MRI,and magnetic resonance angiography more than 14 years ago.Later,with slow growth of the cavernous carotid GIA,aneurysmal thrombosis progressed continuously,spontaneous occlusion of the RICA,complete aneurysmal calcification,and occlusion of the GIA occurred gradually.She had no history of subarachnoid hemorrhage but missed the chance for endovascular therapy at an early stage.As a result,she was left with severe permanent sequelae from the injuries to the right cranial nerves Ⅱ,Ⅲ,Ⅳ,V1/V2,and Ⅴ.CONCLUSION The risk of rupture of the cavernous carotid GIAs was relatively low and possibly further be reduced by the stasis flow and spontaneous occlusion of the parent artery internal carotid artery(ICA)induced by the mass effect of the cavernous carotid GIAs and the extremely rare aneurysmal calcification.However,nowadays,it is advisable to recommend early endovascular treatment for the cavernous carotid GIAs to prevent injuries to the surrounding intracranial nerves and occlusion of the ICA,mainly caused by the mass effect of the cavernous carotid GIAs.展开更多
Objective:To investigate the computed tomography(CT)and magnetic resonance imaging(MRI)features of cavernous hemangioma malformation(CHM)to enhance diagnostic accuracy.Methods:The CT and MRI findings and clinical info...Objective:To investigate the computed tomography(CT)and magnetic resonance imaging(MRI)features of cavernous hemangioma malformation(CHM)to enhance diagnostic accuracy.Methods:The CT and MRI findings and clinical information of 23 patients with CHM were retrospectively analyzed.Results:CT examinations were conducted in 7 cases,while MRI was utilized in 23 cases.Additionally,SWI was employed in 5 cases and enhanced imaging techniques were applied in 14 cases.Among the observed lesions,20 cases presented with a singular lesion,whereas 3 cases exhibited multiple lesions.The lesions were located in 8 frontal lobes,6 cerebellums,2 brainstems,6 temporal lobes,1 basal ganglia,3 parieto-occipital lobes,and 2 thalamus regions.The nodules appeared as quasi-circular lesions with clear or well-defined boundaries.They presented as isodense lesions on CT scans,with one lesion showing peritumoral edema.On MRI,T1-weighted imaging(T1WI)demonstrated isointense signals,while T2-weighted imaging(T2WI)showed isointense and hyperintense signals.Additionally,10 lesions exhibited a low signal ring on T2WI.Diffusion-weighted imaging(DWI)revealed nodular or isointense low signals,while susceptibility-weighted imaging(SWI)displayed enlarged areas of low signal.Fourteen lesions underwent contrast-enhanced scanning,with 2 lesions showing no obvious enhancement,1 lesion demonstrating mild to moderate enhancement,and 11 lesions exhibiting significant enhancement.Notably,6 of these enhanced lesions were surrounded by small blood vessels.Conclusion:Cavernous hemangioma malformation is more commonly found in individual cases.CT alone lacks specificity,making it prone to misdiagnosis.A more comprehensive evaluation of cavernous hemangioma malformation can be achieved through a combination of MRI,DWI,SWI,and enhanced examination,providing valuable references for clinical assessment.展开更多
Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and th...Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and their control on key hydrocarbon accumulation factors, the distribution law of medium-and large-sized marine carbonate gas fields in the basin was examined and the exploration direction was pointed out. Through the analysis of the periodic stretching-uplifting background, it is concluded that five large scale paleo-rifts, three large scale paleo-uplifts, five large scale paleo erosion surfaces were formed in the marine craton stage of Sichuan Basin, and these geological units control the key reservoir forming factors of medium and large sized gas fields:(1) Large-scale paleo-rifts control the distribution of high-quality hydrocarbon generation centers.(2) The margin of large-scale paleo-rifts, high position of paleo-uplifts and paleo erosion surfaces control the distribution of high-quality reservoirs.(3) Large-scale paleo-rifts, paleo-uplifts, paleo erosion surfaces and present tectonic setting jointly control the formation of many types of large and medium-sized traps.(4) Natural gas accumulation is controlled by the inheritance evolution of traps in large geological units. Based on the comparative analysis of the distribution characteristics of medium-and large-sized gas fields and large geological units, it is proposed that the superimposition relationship between single or multiple geological units and the present structure controls the distribution of medium-and large-sized gas fields, and the "three paleo" superimposed area is the most advantageous. According to the above rules, the main exploration fields and directions of medium-and large-sized marine carbonate gas fields in Sichuan Basin include periphery of Deyang-Anyue paleo-rift, eastern margin of Longmenshan paleo-rift, margins of Kaijiang-Liangping oceanic trough and Chengkou-western Hubei oceanic trough, the high part of the subaqueous paleo-uplifts around Central Sichuan, paleo erosion surfaces of the top boundary of Maokou Formation in eastern and southern Sichuan Basin, paleo erosion surfaces of the top boundary of the Leikoupo Formation in central and western Sichuan Basin.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Co...Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.展开更多
Spalling is a typical brittle failure phenomenon of hard rock in deep caverns under high geostress.In this study,key issues are systematically studied concerning the spalling failure of deep hard rock caverns.First,th...Spalling is a typical brittle failure phenomenon of hard rock in deep caverns under high geostress.In this study,key issues are systematically studied concerning the spalling failure of deep hard rock caverns.First,the prismatic rock specimens with small thicknesses(i.e.width×thickness×height:20 mm×50 mm×100 mm)are employed in our tests which not only successfully simulate the spalling failure of hard rock in the laboratory but also obtain a reasonable spalling strength similar to that of the rock mass.Then,a series of spalling experiments is carried out to investigate the mechanism of spalling failure of deep hard rock caverns.Our results show that the intermediate principal stress,weak dynamic disturbances,and rock microstructure have significant effects on the spalling failure.The spalling strength is approximately(0.3–0.8)UCS,where UCS is the uniaxial compressive strength of the cylindrical rock sample with a diameter of around 50 mm.The spalling strength increases first and then decreases with increasing intermediate principal stress.Moreover,an empirical spalling strength criterion and a numerical method of spalling failure are proposed.This numerical method can not only simulate the spalling failure zone formed by tangential compressive stress concentration after excavation under different intermediate principal stresses,but also successfully simulate the failure transition from tensile mode to shear mode associated with confinement change in deep hard rock caverns.Furthermore,an acoustic emission-based early warning method using neural network is proposed to predict the spalling failure.Finally,a technical roadmap for preventing and controlling spalling failure of deep hard rock caverns is presented after summarizing the successful experiences in a typical engineering case.展开更多
The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass ...The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.展开更多
The hydrodynamic performance of three mixers single shaft central mixer(SSC), single shaft off-centred mixer(SSO), dual shaft off-centred mixer(DSO), was investigated in the mixing of yield-pseudoplastic fluids(xantha...The hydrodynamic performance of three mixers single shaft central mixer(SSC), single shaft off-centred mixer(SSO), dual shaft off-centred mixer(DSO), was investigated in the mixing of yield-pseudoplastic fluids(xanthan gum solutions) in the laminar regime. To explore and determine the efficiency of three mixers, both numerical and experimental approaches were adopted. The fluid rheology was described by the Herschel–Bulkley rheological model. Computational fluid dynamics was employed to simulate the apparent viscosity distribution, mixing time, and the flow pattern inside the stirred tank. The developed model was validated through experimentally measured torque. The influence mechanism of the rotational speed and fluid rheology on the cavern evolution was explored deeply. The performances of three mixers in this work were compared at the constant power input and fluid rheology with respect to the flow pattern, mixing time, and mixing efficiency. The results verify that the faster the rotating speed, the greater influence of the fluid rheology on the cavern evolution, and the more uniform apparent viscosity distribution. Moreover, the mixing time decreases continuously as the increasing power consumption per unit volume, and the dimensionless mixing time of DSO mixer was nearly 42.8% and 6.1% shorter than that of SSC and SCO mixer at the same Reynolds number, respectively. According to the mixing efficiency criteria, these data also revealed that DSO was more efficient than SSC and SSO.展开更多
Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variatio...Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.展开更多
基金supported by the National Natural Science Foundation of China(52074046,52122403,51834003,and 52274073)the Graduate Research and Innovation Foundation of Chongqing(CYB22023)+2 种基金the Chongqing Talents Plan for Young Talents(cstc2022ycjh-bgzxm0035)Hunan Institute of Engineering(21RC025 and XJ2005)Hunan Province Education Department(21B0664).
文摘Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.
基金National Natural Science Foundation of ChinaGrant/Award Number:41972316+3 种基金Sichuan Science&Technology FoundationGrant/Award Number:2022YFSY0007Joint Funds of the National Natural Science Foundation of ChinaGrant/Award Number:U2344226。
文摘Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.
文摘Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.
文摘Cerebral cavernous malformations are a rare and congenital vascular malformation that can present as a challenge in neurosurgical management. The term “giant cerebral cavernous malformations” still does not have a clear definition in the literature, with a wide variety of results. It is known, however, that there is an association between the size of the cavernoma and postoperative sequelae, especially in those with a size greater than 3 cm in its largest diameter. We present a case report of resection of a giant brain cavernoma measuring approximately 8 cm in its largest diameter, emphasizing on clinical presentation, diagnoses and postoperative evolution. Additionally, we performed a comprehensive review of the existing literature on the subject, addressing the epidemiology, pathophysiology, diagnostic methods, treatment options, and prognosis associated with this condition.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.
基金the financial support from the Natural Science Foundation of China (Nos.52179118,52209151 and 42307238)the Science and Technology Project of Jiangsu Provincial Department of Science and Technology-Carbon Emissions Peak and Carbon Neutrality Science and Technology Innovation Specia Fund Project (No.BK20220025)+3 种基金the Excellent Postdoctoral Program of Jiangsu Province (No.2023ZB602)the China Postdoctora Science Foundation (Nos.2023M733773 and 2023M733772)Xuzhou City Science and Technology Innovation Special Basic Research Plan (KC23045)State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining&Technology (No SKLGDUEK1916)。
文摘Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.
文摘BACKGROUND Direct carotid cavernous fistulas(CCFs)are typically the result of a severe traumatic brain injury.High-flow arteriovenous shunts secondary to rupture of an intracavernous aneurysm,resulting in direct CCFs,are rare.The use of a pipeline embolization device in conjunction with coils and Onyx glue for treatment of direct high-flow CCF resulting from ruptured cavernous carotid artery aneurysm in a clinical setting is not well documented.CASE SUMMARY A 58-year-old woman presented to our department with symptoms of blepharoptosis and intracranial bruits for 1 wk.During physical examination,there was right eye exophthalmos and ocular motor palsy.The rest of the neurological examination was clear.Notably,the patient had no history of head injury.The patient was treated with a pipeline embolization device in the ipsilateral internal carotid artery across the fistula.Coils and Onyx were placed through the femoral venous route,followed by placement of the pipeline embolization device with assistance from a balloon-coiling technique.No intraoperative or perioperative complications occurred.Preoperative symptoms of bulbar hyperemia and bruits subsided immediately after the operation.CONCLUSION Pipeline embolization device in conjunction with coiling and Onyx may be a safe and effective approach for direct CCFs.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY20H030010Medical Health Science and Technology Project of Zhejiang Provincial Health Commission,No.2019-KY1-001-181.
文摘BACKGROUND Colorectal cavernous hemangioma is a rare vascular malformation resulting in recurrent lower gastrointestinal hemorrhage,and can be misinterpreted as colitis.Surgical resection is currently the mainstay of treatment,with an emphasis on sphincter preservation.CASE SUMMARY We present details of two young patients with a history of persistent hematochezia diagnosed with colorectal cavernous hemangioma by endoscopic ultrasound(EUS).Cavernous hemangioma was relieved by several EUS-guided lauromacrogol injections and the patients achieved favorable clinical prognosis.CONCLUSION Multiple sequential EUS-guided injections of lauromacrogol is a safe,effective,cost-efficient,and minimally invasive alternative for colorectal cavernous hemangioma.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)the Since&Technology Department of Sichuan Province Project(Grant No.2021YFH0010)the High‐End Foreign Experts Program of the Yunnan Revitalization Talents Support Plan of Yunnan Province.
文摘Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China.
文摘BACKGROUND Lymphangiomas in the gastrointestinal tract are extremely rare in adults.As a benign lesion,small intestine lymphangiomas often remain asymptomatic and pose challenges for definitive diagnosis.However,lymphangiomas can give rise to complications such as abdominal pain,bleeding,volvulus,and intussusception.Here,we report a case of jejunal cavernous lymphangioma that presented with intermittent melena and refractory anemia in a male adult.CASE SUMMARY A 66-year-old man presented with intermittent melena,fatigue and refractory anemia nine months prior.Esophagogastroduodenoscopy and colonoscopy were performed many times and revealed no apparent bleeding.Conservative management,including transfusion,hemostasis,gastric acid secretion inhibition and symptomatic treatment,was performed,but the lesions tended to recur shortly after surgery.Ultimately,the patient underwent capsule endoscopy,which revealed a more than 10 cm lesion accompanied by active bleeding.After singleballoon enteroscopy and biopsy,a diagnosis of jejunal cavernous lymphangioma was confirmed,and the patient underwent surgical resection.No complications or recurrences were observed postoperatively.CONCLUSION Jejunal cavernous lymphangioma should be considered a cause of obscure gastrointestinal bleeding.Capsule endoscopy and single-balloon enteroscopy can facilitate diagnosis.Surgical resection is an effective management method.
基金Supported by The Fong Shu Fook Tong and Fong Yun Wah Foundations,No.14X30127.
文摘BACKGROUND Patients with giant intracranial aneurysms(GIAs)are at a high risk of rupture,morbidity,and mortality even after surgical or endovascular treatment.We described a case of a spontaneously occluded GIA secondary to gradual growth of the GIA,continuously progressed aneurysmal thrombosis,complete aneurysmal calcification and complete occlusion of the parent artery-the right internal carotid artery(RICA).CASE SUMMARY A 72-year-old female patient complained of sudden pain in her right eye upon admission to our hospital.She had been diagnosed with a GIA[30 mm(axial)×38 mm(coronal)×28 mm(sagittal)]containing an aneurysmal thrombus located in the cavernous sinus segment of RICA diagnosed by magnetic resonance imaging(MRI),enhanced MRI,and magnetic resonance angiography more than 14 years ago.Later,with slow growth of the cavernous carotid GIA,aneurysmal thrombosis progressed continuously,spontaneous occlusion of the RICA,complete aneurysmal calcification,and occlusion of the GIA occurred gradually.She had no history of subarachnoid hemorrhage but missed the chance for endovascular therapy at an early stage.As a result,she was left with severe permanent sequelae from the injuries to the right cranial nerves Ⅱ,Ⅲ,Ⅳ,V1/V2,and Ⅴ.CONCLUSION The risk of rupture of the cavernous carotid GIAs was relatively low and possibly further be reduced by the stasis flow and spontaneous occlusion of the parent artery internal carotid artery(ICA)induced by the mass effect of the cavernous carotid GIAs and the extremely rare aneurysmal calcification.However,nowadays,it is advisable to recommend early endovascular treatment for the cavernous carotid GIAs to prevent injuries to the surrounding intracranial nerves and occlusion of the ICA,mainly caused by the mass effect of the cavernous carotid GIAs.
文摘Objective:To investigate the computed tomography(CT)and magnetic resonance imaging(MRI)features of cavernous hemangioma malformation(CHM)to enhance diagnostic accuracy.Methods:The CT and MRI findings and clinical information of 23 patients with CHM were retrospectively analyzed.Results:CT examinations were conducted in 7 cases,while MRI was utilized in 23 cases.Additionally,SWI was employed in 5 cases and enhanced imaging techniques were applied in 14 cases.Among the observed lesions,20 cases presented with a singular lesion,whereas 3 cases exhibited multiple lesions.The lesions were located in 8 frontal lobes,6 cerebellums,2 brainstems,6 temporal lobes,1 basal ganglia,3 parieto-occipital lobes,and 2 thalamus regions.The nodules appeared as quasi-circular lesions with clear or well-defined boundaries.They presented as isodense lesions on CT scans,with one lesion showing peritumoral edema.On MRI,T1-weighted imaging(T1WI)demonstrated isointense signals,while T2-weighted imaging(T2WI)showed isointense and hyperintense signals.Additionally,10 lesions exhibited a low signal ring on T2WI.Diffusion-weighted imaging(DWI)revealed nodular or isointense low signals,while susceptibility-weighted imaging(SWI)displayed enlarged areas of low signal.Fourteen lesions underwent contrast-enhanced scanning,with 2 lesions showing no obvious enhancement,1 lesion demonstrating mild to moderate enhancement,and 11 lesions exhibiting significant enhancement.Notably,6 of these enhanced lesions were surrounded by small blood vessels.Conclusion:Cavernous hemangioma malformation is more commonly found in individual cases.CT alone lacks specificity,making it prone to misdiagnosis.A more comprehensive evaluation of cavernous hemangioma malformation can be achieved through a combination of MRI,DWI,SWI,and enhanced examination,providing valuable references for clinical assessment.
基金Supported by the China National Science and Technology Major Project(2016ZX05007004,2016ZX05004005)
文摘Based on the analysis of the basic characteristics of medium-and large-sized marine gas fields in Sichuan Basin, combined with the division of major reservoir forming geological units in the marine craton stage and their control on key hydrocarbon accumulation factors, the distribution law of medium-and large-sized marine carbonate gas fields in the basin was examined and the exploration direction was pointed out. Through the analysis of the periodic stretching-uplifting background, it is concluded that five large scale paleo-rifts, three large scale paleo-uplifts, five large scale paleo erosion surfaces were formed in the marine craton stage of Sichuan Basin, and these geological units control the key reservoir forming factors of medium and large sized gas fields:(1) Large-scale paleo-rifts control the distribution of high-quality hydrocarbon generation centers.(2) The margin of large-scale paleo-rifts, high position of paleo-uplifts and paleo erosion surfaces control the distribution of high-quality reservoirs.(3) Large-scale paleo-rifts, paleo-uplifts, paleo erosion surfaces and present tectonic setting jointly control the formation of many types of large and medium-sized traps.(4) Natural gas accumulation is controlled by the inheritance evolution of traps in large geological units. Based on the comparative analysis of the distribution characteristics of medium-and large-sized gas fields and large geological units, it is proposed that the superimposition relationship between single or multiple geological units and the present structure controls the distribution of medium-and large-sized gas fields, and the "three paleo" superimposed area is the most advantageous. According to the above rules, the main exploration fields and directions of medium-and large-sized marine carbonate gas fields in Sichuan Basin include periphery of Deyang-Anyue paleo-rift, eastern margin of Longmenshan paleo-rift, margins of Kaijiang-Liangping oceanic trough and Chengkou-western Hubei oceanic trough, the high part of the subaqueous paleo-uplifts around Central Sichuan, paleo erosion surfaces of the top boundary of Maokou Formation in eastern and southern Sichuan Basin, paleo erosion surfaces of the top boundary of the Leikoupo Formation in central and western Sichuan Basin.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.
文摘Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.
基金The authors greatly gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant Nos.52169021 and 51869003)the Interdisciplinary Scientific Research Foundation of Guangxi University,China(Grant No.2022JCA004).
文摘Spalling is a typical brittle failure phenomenon of hard rock in deep caverns under high geostress.In this study,key issues are systematically studied concerning the spalling failure of deep hard rock caverns.First,the prismatic rock specimens with small thicknesses(i.e.width×thickness×height:20 mm×50 mm×100 mm)are employed in our tests which not only successfully simulate the spalling failure of hard rock in the laboratory but also obtain a reasonable spalling strength similar to that of the rock mass.Then,a series of spalling experiments is carried out to investigate the mechanism of spalling failure of deep hard rock caverns.Our results show that the intermediate principal stress,weak dynamic disturbances,and rock microstructure have significant effects on the spalling failure.The spalling strength is approximately(0.3–0.8)UCS,where UCS is the uniaxial compressive strength of the cylindrical rock sample with a diameter of around 50 mm.The spalling strength increases first and then decreases with increasing intermediate principal stress.Moreover,an empirical spalling strength criterion and a numerical method of spalling failure are proposed.This numerical method can not only simulate the spalling failure zone formed by tangential compressive stress concentration after excavation under different intermediate principal stresses,but also successfully simulate the failure transition from tensile mode to shear mode associated with confinement change in deep hard rock caverns.Furthermore,an acoustic emission-based early warning method using neural network is proposed to predict the spalling failure.Finally,a technical roadmap for preventing and controlling spalling failure of deep hard rock caverns is presented after summarizing the successful experiences in a typical engineering case.
基金This work has been conducted as part of the HYBRIT research project RP-1.This research was financially supported by the Swedish Energy Agency(Grant No.42684e2).
文摘The storage of hydrogen gas in underground lined rock caverns(LRCs)enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel.Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur.Analytical and numerical models can be used to estimate the rock mass response to high internal pressure;however,the fitness of these models under different in situ stress conditions and cavern shapes has not been studied.In this paper,the suitability of analytical and numerical models to estimate the maximum cavern wall tangential strain under high internal pressure is studied.The analytical model is derived in detail and finite element(FE)models considering both two-dimensional(2D)and three-dimensional(3D)geometries are presented.These models are verified with field measurements from the LRC in Skallen,southwestern Sweden.The analytical model is inexpensive to implement and gives good results for isotropic in situ stress conditions and large cavern heights.For the case of anisotropic horizontal in situ stresses,as the conditions in Skallen,the 3D FE model is the best approach.
基金supported by the National Natural Science Foundation of China (22078030, U1802255)National Key Research and Development Project (2019YFC1905802)+1 种基金Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control (2011DA105287-zd201902)Three Gorges Laboratory Open Fund of Hubei Province (SK211009, SK215001)。
文摘The hydrodynamic performance of three mixers single shaft central mixer(SSC), single shaft off-centred mixer(SSO), dual shaft off-centred mixer(DSO), was investigated in the mixing of yield-pseudoplastic fluids(xanthan gum solutions) in the laminar regime. To explore and determine the efficiency of three mixers, both numerical and experimental approaches were adopted. The fluid rheology was described by the Herschel–Bulkley rheological model. Computational fluid dynamics was employed to simulate the apparent viscosity distribution, mixing time, and the flow pattern inside the stirred tank. The developed model was validated through experimentally measured torque. The influence mechanism of the rotational speed and fluid rheology on the cavern evolution was explored deeply. The performances of three mixers in this work were compared at the constant power input and fluid rheology with respect to the flow pattern, mixing time, and mixing efficiency. The results verify that the faster the rotating speed, the greater influence of the fluid rheology on the cavern evolution, and the more uniform apparent viscosity distribution. Moreover, the mixing time decreases continuously as the increasing power consumption per unit volume, and the dimensionless mixing time of DSO mixer was nearly 42.8% and 6.1% shorter than that of SSC and SCO mixer at the same Reynolds number, respectively. According to the mixing efficiency criteria, these data also revealed that DSO was more efficient than SSC and SSO.
文摘Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.