Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property a...Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
The pressure vessel of 200 MW low temperature nuclear heating reactor (LTNHR 200) is the main part of primary pressure boundary and its reasonable and reliable structural design is the key point to assure the safe op...The pressure vessel of 200 MW low temperature nuclear heating reactor (LTNHR 200) is the main part of primary pressure boundary and its reasonable and reliable structural design is the key point to assure the safe operation of LTNHR 200. The double shell pressure vessels were designed. LTNHR 200 pressure vessel meets the condition of Leak Before Break and has a relatively low failure probability. Metal containment (outer pressure vessel) has the similar features to LTNHR 200 pressure vessel. There exists no LOCA and core melting with the double vessel. The in service inspection of the pressure vessel can be simplified greatly because of the safety and structural features of the reactor.展开更多
We examined wave phenomena pertinent to water in a rotating,laterally oscillating cylindrical container.In particular,we measured the time-dependent dynamic water pressure and pressure change by fast Fourier transform...We examined wave phenomena pertinent to water in a rotating,laterally oscillating cylindrical container.In particular,we measured the time-dependent dynamic water pressure and pressure change by fast Fourier transform analysis.The swirling of water in the container had three frequency components;the frequency responses of each frequency component are reported herein.When swirling occurs in a rotating cylindrical container,it was found that the wave rotating in the same direction as the rotation of the cylindrical container and the wave rotating in the opposite direction to the cylindrical container exist at the same time.The swirling direction was determined by the relationship of these magnitude.展开更多
This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive in...This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.展开更多
The pressure variances in the reactor core and containment of a High Temperature Gas-cooled Reactor (HTGR) after a primary loop pressure boundary break accident determine the structural integrity and safety of the rea...The pressure variances in the reactor core and containment of a High Temperature Gas-cooled Reactor (HTGR) after a primary loop pressure boundary break accident determine the structural integrity and safety of the reactor. Based on mass conservation, energy conservation and state equations, explicit formulae for the transient pressure and temperature variances in the pressure vessels were deduced, and a set of differential equations for the transient pressure and temperature variances in the containment were developed. Numerical simulation was also conducted to investigate the transient pressure and temperature variances in the pressure vessels and containment. The results show that energy transformation due to expansion work cannot be neglected. The maximum pressure in the containment could increase by 40 percent due to blockage caused by air in the containment. Detailed numerical simulations of the transient pressure and temperature variance in the reactor core flow passages were also conducted. The results show that the pressures acting on the reactor core and containment are below acceptable values.展开更多
基金financially supported by the National Basic Research Program of China(No.2011CB201203)the National Natural Science Foundation of China(Nos.51204217 and 51374256)+1 种基金the National Major Science and Technology Projects of China(Nos.2011ZX05034-004 and 2011ZX05040-001-005)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201212)
文摘Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
文摘The pressure vessel of 200 MW low temperature nuclear heating reactor (LTNHR 200) is the main part of primary pressure boundary and its reasonable and reliable structural design is the key point to assure the safe operation of LTNHR 200. The double shell pressure vessels were designed. LTNHR 200 pressure vessel meets the condition of Leak Before Break and has a relatively low failure probability. Metal containment (outer pressure vessel) has the similar features to LTNHR 200 pressure vessel. There exists no LOCA and core melting with the double vessel. The in service inspection of the pressure vessel can be simplified greatly because of the safety and structural features of the reactor.
文摘We examined wave phenomena pertinent to water in a rotating,laterally oscillating cylindrical container.In particular,we measured the time-dependent dynamic water pressure and pressure change by fast Fourier transform analysis.The swirling of water in the container had three frequency components;the frequency responses of each frequency component are reported herein.When swirling occurs in a rotating cylindrical container,it was found that the wave rotating in the same direction as the rotation of the cylindrical container and the wave rotating in the opposite direction to the cylindrical container exist at the same time.The swirling direction was determined by the relationship of these magnitude.
文摘This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.
基金supported by the National Natural Science Foundation of China (51006061)
文摘The pressure variances in the reactor core and containment of a High Temperature Gas-cooled Reactor (HTGR) after a primary loop pressure boundary break accident determine the structural integrity and safety of the reactor. Based on mass conservation, energy conservation and state equations, explicit formulae for the transient pressure and temperature variances in the pressure vessels were deduced, and a set of differential equations for the transient pressure and temperature variances in the containment were developed. Numerical simulation was also conducted to investigate the transient pressure and temperature variances in the pressure vessels and containment. The results show that energy transformation due to expansion work cannot be neglected. The maximum pressure in the containment could increase by 40 percent due to blockage caused by air in the containment. Detailed numerical simulations of the transient pressure and temperature variance in the reactor core flow passages were also conducted. The results show that the pressures acting on the reactor core and containment are below acceptable values.