New polyoxometalate α-K 12H 3[Y(BW 11O 39) 2]·25H 2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K 0.475WO 3. XRD, TG-DTA, XPS, ...New polyoxometalate α-K 12H 3[Y(BW 11O 39) 2]·25H 2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K 0.475WO 3. XRD, TG-DTA, XPS, 183W-NMR,CV and AC impedance spectra were used to characterize the resulting material. The results of XPS indicate that La has permeated and diffused into the body of the sample and exists in the forms of binding with other components. The crystal structure parameters of K 0.475WO 3 were obtained by the analysis of XRD, which shows tetragonal crystal system with lattice parameters: a=12 28 nm, c=3.833 nm, V=578.48 nm -3. The conductivities calculated from the results of AC impedance spectra of the material increase with the increasing of temperature, which shows a semiconductor character.展开更多
We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in th...We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in the photon energy region from 20 eV to 130 eV was obtained and the valence-band structure of α-La was determined. Except for 4f-related structures, the valence-band structures of dhcp α-La and dhcp β-Ce were found to resemble each other. From the band structure, the crystal structure of the La film was confirmed. No evidence for the existence of a 5d-like surface state near the Fermi energy at the point of the surface Brillouin zone was obtained and a 6s band bottom was identified.展开更多
An investigation of lanthanum oxide(La_(2)O_(3))addition to tungsten heavy alloy(WHA)with a ternary composition of W-7 Ni-3 Fe was reported in this study.The mixed powders were sintered using spark plasma sintering(SP...An investigation of lanthanum oxide(La_(2)O_(3))addition to tungsten heavy alloy(WHA)with a ternary composition of W-7 Ni-3 Fe was reported in this study.The mixed powders were sintered using spark plasma sintering(SPS)technique.La_(2)O_(3)was added in increments of 0.25 wt%,0.50 wt%,0.75 wt%and 1.00 wt%to WHA,respectively.The sintered samples were characterized for microstructural evolution and mechanical properties.The influences of La_(2)O_(3)addition on density,grain size,hardness,ultimate tensile strength(UTS)and ductility on W-7 Ni-3 Fe system were discussed in this study.The highest relative sintered density of 87.95%was obtained for 0.25 wt%La_(2)O_(3)addition to W-7 Ni-3 Fe.The lowest grain size of 7.89μm was observed for 1.00 wt%La_(2)O_(3)addition.Similarly,the highest hardness and UTS of HV 533 and1110 MPa,respectively,were also obtained for the same composition.Scanning electron microscopy(SEM)and energy-dispersive spectroscopy(EDS)of the samples revealed homogenous distribution of La_(2)O_(3)in the alloy matrix.Fractography of the sintered alloy samples revealed W-W intergranular fracture.展开更多
The increasing energy consumption in buildings due to cooling and heating,accounting for over one-third of the total energy consumption in society,has become a growing concern.Therefore,reducing building energy consum...The increasing energy consumption in buildings due to cooling and heating,accounting for over one-third of the total energy consumption in society,has become a growing concern.Therefore,reducing building energy consumption has become an urgent issue for countries worldwide.Windows serve as the primary channel for energy exchange between the indoor and the outdoor environments.While providing natural lighting for occupants,windows are also the weakest link in terms of energy consumption.In recent years,there have been some new and superior coating glass technologies compared to traditional low-emissivity glass.These coatings utilize various optical functional materials to regulate the incident sunlight,aiming to save cooling and heating energy consumption.Materials,such as tungsten-based compounds,vanadium dioxide,lanthanum hexaboride,or copper monosulfide,can absorb near-infrared light to effectively control solar radiation by leveraging the localized surface plasmon resonance(LSPR)effect of nanoparticles.This paper mainly introduces the micro-mechanisms of these materials and provides a detailed summary of the latest advancements in coating materials.The application and effects of these coatings in building energy conservation are emphasized.Finally,the challenges and prospects of LSPRbased smart windows are discussed.It is expected that this review will provide new insights into the application of smart windows in green buildings.展开更多
文摘New polyoxometalate α-K 12H 3[Y(BW 11O 39) 2]·25H 2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K 0.475WO 3. XRD, TG-DTA, XPS, 183W-NMR,CV and AC impedance spectra were used to characterize the resulting material. The results of XPS indicate that La has permeated and diffused into the body of the sample and exists in the forms of binding with other components. The crystal structure parameters of K 0.475WO 3 were obtained by the analysis of XRD, which shows tetragonal crystal system with lattice parameters: a=12 28 nm, c=3.833 nm, V=578.48 nm -3. The conductivities calculated from the results of AC impedance spectra of the material increase with the increasing of temperature, which shows a semiconductor character.
文摘We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in the photon energy region from 20 eV to 130 eV was obtained and the valence-band structure of α-La was determined. Except for 4f-related structures, the valence-band structures of dhcp α-La and dhcp β-Ce were found to resemble each other. From the band structure, the crystal structure of the La film was confirmed. No evidence for the existence of a 5d-like surface state near the Fermi energy at the point of the surface Brillouin zone was obtained and a 6s band bottom was identified.
文摘An investigation of lanthanum oxide(La_(2)O_(3))addition to tungsten heavy alloy(WHA)with a ternary composition of W-7 Ni-3 Fe was reported in this study.The mixed powders were sintered using spark plasma sintering(SPS)technique.La_(2)O_(3)was added in increments of 0.25 wt%,0.50 wt%,0.75 wt%and 1.00 wt%to WHA,respectively.The sintered samples were characterized for microstructural evolution and mechanical properties.The influences of La_(2)O_(3)addition on density,grain size,hardness,ultimate tensile strength(UTS)and ductility on W-7 Ni-3 Fe system were discussed in this study.The highest relative sintered density of 87.95%was obtained for 0.25 wt%La_(2)O_(3)addition to W-7 Ni-3 Fe.The lowest grain size of 7.89μm was observed for 1.00 wt%La_(2)O_(3)addition.Similarly,the highest hardness and UTS of HV 533 and1110 MPa,respectively,were also obtained for the same composition.Scanning electron microscopy(SEM)and energy-dispersive spectroscopy(EDS)of the samples revealed homogenous distribution of La_(2)O_(3)in the alloy matrix.Fractography of the sintered alloy samples revealed W-W intergranular fracture.
基金financially supported by the National Natural Science Foundation of China(No.52266014)the Natural Science Foundation of Inner Mongolia(No.2021MS01015)+1 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NJYT24062)the Fundamental Research Funds for Inner Mongolia University of Science&Technology。
文摘The increasing energy consumption in buildings due to cooling and heating,accounting for over one-third of the total energy consumption in society,has become a growing concern.Therefore,reducing building energy consumption has become an urgent issue for countries worldwide.Windows serve as the primary channel for energy exchange between the indoor and the outdoor environments.While providing natural lighting for occupants,windows are also the weakest link in terms of energy consumption.In recent years,there have been some new and superior coating glass technologies compared to traditional low-emissivity glass.These coatings utilize various optical functional materials to regulate the incident sunlight,aiming to save cooling and heating energy consumption.Materials,such as tungsten-based compounds,vanadium dioxide,lanthanum hexaboride,or copper monosulfide,can absorb near-infrared light to effectively control solar radiation by leveraging the localized surface plasmon resonance(LSPR)effect of nanoparticles.This paper mainly introduces the micro-mechanisms of these materials and provides a detailed summary of the latest advancements in coating materials.The application and effects of these coatings in building energy conservation are emphasized.Finally,the challenges and prospects of LSPRbased smart windows are discussed.It is expected that this review will provide new insights into the application of smart windows in green buildings.