The initial shape of the secondary arc considerably influences its subsequent shape.To establish the model for the arcing time of the secondary arc and modify the single-phase reclosing sequence,theoretical and experi...The initial shape of the secondary arc considerably influences its subsequent shape.To establish the model for the arcing time of the secondary arc and modify the single-phase reclosing sequence,theoretical and experimental analysis of the evolution process of the short-circuit arc to the secondary arc is critical.In this study,an improved charge simulation method was used to develop the internal-space electric-field model of the short-circuit arc.The intensity of the electric field was used as an independent variable to describe the initial shape of the secondary arc.A secondary arc evolution model was developed based on this model.Moreover,the accuracy of the model was evaluated by comparison with physical experimental results.When the secondary arc current increased,the arcing time and dispersion increased.There is an overall trend of increasing arc length with increasing arcing time.Nevertheless,there is a reduction in arc length during arc ignition due to short circuits between the arc columns.Furthermore,the arcing time decreased in the range of 0°-90°as the angle between the wind direction and the x-axis increased.This work investigated the method by which short-circuit arcs evolve into secondary arcs.The results can be used to develop the secondary arc evolution model and to provide both a technical and theoretical basis for secondary arc suppression.展开更多
A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell...A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell's equations. The model aims to elucidate how the physical properties of electrons and heavy particles affect heat transfer and fluid flow in a lamellar cathode arc. This is achieved by solving and comparing the fields of electron temperature,heavy particle temperature, fluid flow, current density, and Lorentz force distribution under varying welding currents. The results show that the guiding effect of the lamellar cathode on current density, the inertial drag effect of moving arc, and the attraction effect of Lorentz force at the lamellar cathode tip primarily govern the distribution of the arc's physical fields. The guiding effect localizes the current density to the front end of the lamellar cathode, particularly where the discharge gap is minimal. Both the inertial drag effect and the attraction effect of Lorentz force direct arc flow toward its periphery. Under the influence of the aforementioned factors, the physical fields of the lamellar cathode arc undergo expansion and shift counter to the arc's direction of motion. A reduction in welding current substantially weakens the guiding effect,causing the arc's physical fields to deviate further in the direction opposite to the arc motion. In comparison with a cylindrical cathode arc, the physical fields of the lamellar cathode arc are markedly expanded, leading to a reduction in current density, electron temperature, heavy particle temperature, cathode jet flow velocity, and Lorentz force.展开更多
Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.Howeve...Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.However,the high chemical stability of ZnFe_(2)O_(4)in EAF dust poses challenges to Zn recovery.To address this issue,a facile approach that involves oxygen-assisted chlorination using molten MgCl_(2)is proposed.This work focused on elucidating the role of O2 in the reaction between ZnFe_(2)O_(4)and molten MgCl_(2).The results demonstrate that MgCl_(2)effectively broke down the ZnFe_(2)O_(4)structure,and the high O2 atmosphere considerably promoted the sep-aration of Zn from other components in the form of ZnCl_(2).The presence of O2 facilitated the formation of MgFe_(2)O_(4),which stabilized Fe and prevented its chlorination.Furthermore,the excessive use of MgCl_(2)resulted in increased evaporation loss,and high temperatures pro-moted the rapid separation of Zn.Building on these findings,we successfully extracted ZnCl_(2)-enriched volatiles from practical EAF dust through oxygen-assisted chlorination.Under optimized conditions,this method achieved exceptional Zn chlorination percentage of over 97%within a short period,while Fe chlorination remained below 1%.The resulting volatiles contained 85wt%of ZnCl_(2),which can be further processed to produce metallic Zn.The findings offer guidance for the selective recovery of valuable metals,particularly from solid wastes such as EAF dust.展开更多
The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding s...The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding speed as a characteristic quantity,the wire melting control ability of twin-body plasma arc was studied by adjusting the current separation ratio(under the condition of a constant total current),the wire current/main current and the position of the wire in the arc axial direction.The results showed that under the premise that the total current remains unchanged(100 A),as the current separation ratio increased,the middle and minimum melting amounts increased approximately synchronously under the effect of anode effect power,the first melting mass range remained constant;the maximum melting amount increased twice as fast as the middle melting amount under the effect of the wire feeding speed,and the second melting mass range was expanded.When the wire current increased,the anode effect power and the plasma arc power were both factors causing the increase in the wire melting amount;however,when the main current increased,the plasma arc power was the only factor causing the increase in the wire melting amount.The average wire melting increment caused by the anode effect power was approximately 2.7 times that caused by the plasma arc power.The minimum melting amount was not affected by the wire-torch distance under any current separation ratio tested.When the current separation ratio increased and reached a threshold,the middle melting amount remained constant with increasing wire-torch distance.When the current separation ratio continued to increase and reached the next threshold,the maximum melting amount remained constant with the increasing wire-torch distance.The effect of the wire-torch distance on the wire melting amount reduced with the increase in the current separation ratio.Through this study,the decoupling mechanism and ability of this innovative arc heat source is more clearly.展开更多
基金supported by National Natural Science Foundation of China(Nos.92066108 and 51277061)。
文摘The initial shape of the secondary arc considerably influences its subsequent shape.To establish the model for the arcing time of the secondary arc and modify the single-phase reclosing sequence,theoretical and experimental analysis of the evolution process of the short-circuit arc to the secondary arc is critical.In this study,an improved charge simulation method was used to develop the internal-space electric-field model of the short-circuit arc.The intensity of the electric field was used as an independent variable to describe the initial shape of the secondary arc.A secondary arc evolution model was developed based on this model.Moreover,the accuracy of the model was evaluated by comparison with physical experimental results.When the secondary arc current increased,the arcing time and dispersion increased.There is an overall trend of increasing arc length with increasing arcing time.Nevertheless,there is a reduction in arc length during arc ignition due to short circuits between the arc columns.Furthermore,the arcing time decreased in the range of 0°-90°as the angle between the wind direction and the x-axis increased.This work investigated the method by which short-circuit arcs evolve into secondary arcs.The results can be used to develop the secondary arc evolution model and to provide both a technical and theoretical basis for secondary arc suppression.
基金National Natural Science Foundation of China (No. 51605384)the Natural Science Foundation of Gansu Province,China (No. 21JR7RA308)。
文摘A three-dimensional, two-temperature(2T) model of a lamellar cathode arc is constructed,drawing upon the conservation equations for mass, momentum, electron energy, and heavy particle energy, in addition to Maxwell's equations. The model aims to elucidate how the physical properties of electrons and heavy particles affect heat transfer and fluid flow in a lamellar cathode arc. This is achieved by solving and comparing the fields of electron temperature,heavy particle temperature, fluid flow, current density, and Lorentz force distribution under varying welding currents. The results show that the guiding effect of the lamellar cathode on current density, the inertial drag effect of moving arc, and the attraction effect of Lorentz force at the lamellar cathode tip primarily govern the distribution of the arc's physical fields. The guiding effect localizes the current density to the front end of the lamellar cathode, particularly where the discharge gap is minimal. Both the inertial drag effect and the attraction effect of Lorentz force direct arc flow toward its periphery. Under the influence of the aforementioned factors, the physical fields of the lamellar cathode arc undergo expansion and shift counter to the arc's direction of motion. A reduction in welding current substantially weakens the guiding effect,causing the arc's physical fields to deviate further in the direction opposite to the arc motion. In comparison with a cylindrical cathode arc, the physical fields of the lamellar cathode arc are markedly expanded, leading to a reduction in current density, electron temperature, heavy particle temperature, cathode jet flow velocity, and Lorentz force.
文摘Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.However,the high chemical stability of ZnFe_(2)O_(4)in EAF dust poses challenges to Zn recovery.To address this issue,a facile approach that involves oxygen-assisted chlorination using molten MgCl_(2)is proposed.This work focused on elucidating the role of O2 in the reaction between ZnFe_(2)O_(4)and molten MgCl_(2).The results demonstrate that MgCl_(2)effectively broke down the ZnFe_(2)O_(4)structure,and the high O2 atmosphere considerably promoted the sep-aration of Zn from other components in the form of ZnCl_(2).The presence of O2 facilitated the formation of MgFe_(2)O_(4),which stabilized Fe and prevented its chlorination.Furthermore,the excessive use of MgCl_(2)resulted in increased evaporation loss,and high temperatures pro-moted the rapid separation of Zn.Building on these findings,we successfully extracted ZnCl_(2)-enriched volatiles from practical EAF dust through oxygen-assisted chlorination.Under optimized conditions,this method achieved exceptional Zn chlorination percentage of over 97%within a short period,while Fe chlorination remained below 1%.The resulting volatiles contained 85wt%of ZnCl_(2),which can be further processed to produce metallic Zn.The findings offer guidance for the selective recovery of valuable metals,particularly from solid wastes such as EAF dust.
基金Supported by Youth Program of National Natural Science Foundation of China(Grant No.51905008)Beijing Postdoctoral Research Foundation of China(Grant No.2021-zz-064)+2 种基金Shandong Provincial Major Science and Technology Innovation Project of China(Grant No.2020JMRH0504)Jinan Innovation Team Project of China(Grant No.2021GXRC066)Quancheng Scholars Construction Project of China(Grant No.D03032).
文摘The twin-body plasma arc has the decoupling control ability of heat transfer and mass transfer,which is beneficial to shape and property control in wire arc additive manufacturing.In this paper,with the wire feeding speed as a characteristic quantity,the wire melting control ability of twin-body plasma arc was studied by adjusting the current separation ratio(under the condition of a constant total current),the wire current/main current and the position of the wire in the arc axial direction.The results showed that under the premise that the total current remains unchanged(100 A),as the current separation ratio increased,the middle and minimum melting amounts increased approximately synchronously under the effect of anode effect power,the first melting mass range remained constant;the maximum melting amount increased twice as fast as the middle melting amount under the effect of the wire feeding speed,and the second melting mass range was expanded.When the wire current increased,the anode effect power and the plasma arc power were both factors causing the increase in the wire melting amount;however,when the main current increased,the plasma arc power was the only factor causing the increase in the wire melting amount.The average wire melting increment caused by the anode effect power was approximately 2.7 times that caused by the plasma arc power.The minimum melting amount was not affected by the wire-torch distance under any current separation ratio tested.When the current separation ratio increased and reached a threshold,the middle melting amount remained constant with increasing wire-torch distance.When the current separation ratio continued to increase and reached the next threshold,the maximum melting amount remained constant with the increasing wire-torch distance.The effect of the wire-torch distance on the wire melting amount reduced with the increase in the current separation ratio.Through this study,the decoupling mechanism and ability of this innovative arc heat source is more clearly.