The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall...Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section.展开更多
This paper reports a contact cantilever MEMS switch. The designed switch has a metal cantilever that acts as an electrostatically activated switch with processing options to achieve dielectric isolation of the control...This paper reports a contact cantilever MEMS switch. The designed switch has a metal cantilever that acts as an electrostatically activated switch with processing options to achieve dielectric isolation of the controlvoltage path from the signal path. To obtain good material properties,an ANSYS FEA tool is used to optimize the structure. The RF MEMS switch is fabricated via a surface micromachining process. The switch has an actuation voltage of 12V,which is close to the simulated value of 11V. The measured and the HFSS simulated isolations are both higher than - 20dB from 0.05 to 10GHz. The measured insertion loss is less than - 0.9dB, relatively larger than the simulated loss of less than - 0.2dB from 0.05 to 10GHz. This is because a contact resistance introduced due to poor physical contact between the bottom lines and the metal cantilever.展开更多
A GaAs-based micro-opto-electro-mechanical-systems(MOEMS) tunable resonant cavity enhanced(RCE) photodetector with a continuous tuning range of 31nm under a 6V tuning voltage is demonstrated.The single cantilever beam...A GaAs-based micro-opto-electro-mechanical-systems(MOEMS) tunable resonant cavity enhanced(RCE) photodetector with a continuous tuning range of 31nm under a 6V tuning voltage is demonstrated.The single cantilever beam structure is adopted for this MOEMS tunable RCE photodetector.The maximum and minimum peak quantum efficiency during the tuning are 36.9% and 30.8%,respectively.The maximum and minimum full-width-at-half-maximum (FWHM) are 20nm and 14nm,respectively.The dark current density is 7.46A/m2 without bias.展开更多
This paper is concerned with the work involved in improving the machining accuracy of a cantilever boring bar by on line compensation with a piezoelectric actuator. A boring bar is made into lever structure, with str...This paper is concerned with the work involved in improving the machining accuracy of a cantilever boring bar by on line compensation with a piezoelectric actuator. A boring bar is made into lever structure, with strain gauges attached to the bar for measuring its force induced deflections. The piezoelectric actuator is employed to compensate the deflections of the boring bar for accuracy improvement. Due to the mechanical advantage of the structure, the boring bar can be made into smaller size. The diameter of the bar implemented is 10 mm and the ratio of length to diameter (L/D) is larger than 8. It is found that the machining accuracy is improved considerably by using the piezoelectric actuator compensation system.展开更多
With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1...With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1960s, illustrating that the transmission and equilibrium method of overburdenpressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called "121mining method", which lays a solid foundation for development of mining science and technology inChina. The "transfer rock beam theory" (TRBT) proposed in the 1980s gives a further understanding forthe transmission path of stope overburden pressure and pressure distribution in high-stress areas. In thisregard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design,making significant contributions to improvement of the coal recovery rate in that era. In the 21st century,the traditional mining technologies faced great challenges and, under the theoretical developmentspioneered by Profs. Minggao Qian and Zhenqi Song, the "cutting cantilever beam theory" (CCBT) wasproposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face,after the first mining cycle, needs one advanced gateway excavation, while the other one is automaticallyformed during the last mining cycle without coal pillars left in the mining area. This method can beimplemented using the CCBT by incorporating the key technologies, including the directional presplittingroof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting systemwith negative Poisson's ratio (NPR) effect material, and remote real-time monitoring technology. TheCCBT and 110 mining method will provide the theoretical and technical basis for the development ofmining industry in China.展开更多
By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by ...By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.展开更多
The quantum behavior ofa precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state ...The quantum behavior ofa precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state is possible. Within a simple model with an ultracold ion coupled to a cantilever with only few vibrational quanta, we solve the dynamics of the coupling system by a squeezed-state expansion technique, and can in principle obtain the exact solution of the time-evolution of the coupling system in the absence of the rotating-wave approximation. Comparing to the treatment under the rotating-wave approximation, we present a more accurate description of the quantum behavior of the cantilever.展开更多
The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution ...The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.展开更多
Impact dampers are usually used to suppress single mode resonance. The goal of this paper is to clarify the difference when the impact damper suppresses the resonances of different modes. A cantilever beam equipped wi...Impact dampers are usually used to suppress single mode resonance. The goal of this paper is to clarify the difference when the impact damper suppresses the resonances of different modes. A cantilever beam equipped with the impact damper is modeled. The elastic contact of the ball and the cantilever beam is described by using the Hertz contact model. The viscous damper between the ball and the cantilever beam is modeled to consume the vibrational energy of the cantilever beam. A piecewise ordinary differential-partial differential equation of the cantilever beam is established, including equations with and without the impact damper. The vibration responses of the cantilever beam with and without the impact damper are numerically calculated. The effects of the impact absorber parameters on the vibration reduction are examined. The results show that multiple resonance peaks of the cantilever beam can be effectively suppressed by the impact damper. Specifically, all resonance amplitudes can be reduced by a larger weight ball. Moreover, the impacting gap is very effective in suppressing the vibration of the cantilever beam. More importantly, there is an optimal impacting gap for each resonance mode of the cantilever beam, but the optimal gap for each mode is different.展开更多
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force f...An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.展开更多
The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force b...The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.展开更多
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the d...Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.展开更多
As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crac...As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.展开更多
Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface lay...Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.展开更多
Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insula...Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.展开更多
This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the pea...This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the peaks of the wavelet coefficients. Secondly, based on the identified crack locations, a simple transform matrix method requiring only the first two tested natural frequencies was used to further identify the crack depth. The present method can be used for crack identification in a complex structure. Numerical results of crack identification of a stepped cantilever beam show that the suggested method is feasible.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordin...The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
文摘Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section.
文摘This paper reports a contact cantilever MEMS switch. The designed switch has a metal cantilever that acts as an electrostatically activated switch with processing options to achieve dielectric isolation of the controlvoltage path from the signal path. To obtain good material properties,an ANSYS FEA tool is used to optimize the structure. The RF MEMS switch is fabricated via a surface micromachining process. The switch has an actuation voltage of 12V,which is close to the simulated value of 11V. The measured and the HFSS simulated isolations are both higher than - 20dB from 0.05 to 10GHz. The measured insertion loss is less than - 0.9dB, relatively larger than the simulated loss of less than - 0.2dB from 0.05 to 10GHz. This is because a contact resistance introduced due to poor physical contact between the bottom lines and the metal cantilever.
文摘A GaAs-based micro-opto-electro-mechanical-systems(MOEMS) tunable resonant cavity enhanced(RCE) photodetector with a continuous tuning range of 31nm under a 6V tuning voltage is demonstrated.The single cantilever beam structure is adopted for this MOEMS tunable RCE photodetector.The maximum and minimum peak quantum efficiency during the tuning are 36.9% and 30.8%,respectively.The maximum and minimum full-width-at-half-maximum (FWHM) are 20nm and 14nm,respectively.The dark current density is 7.46A/m2 without bias.
文摘This paper is concerned with the work involved in improving the machining accuracy of a cantilever boring bar by on line compensation with a piezoelectric actuator. A boring bar is made into lever structure, with strain gauges attached to the bar for measuring its force induced deflections. The piezoelectric actuator is employed to compensate the deflections of the boring bar for accuracy improvement. Due to the mechanical advantage of the structure, the boring bar can be made into smaller size. The diameter of the bar implemented is 10 mm and the ratio of length to diameter (L/D) is larger than 8. It is found that the machining accuracy is improved considerably by using the piezoelectric actuator compensation system.
基金supported by the National Natural Science Foundation of China (No. 51404278)the State Key Program of National Natural Science Foundation of China (No. 51134005)
文摘With the third innovation in science and technology worldwide, China has also experienced thismarvelous progress. Concerning the longwall mining in China, the "masonry beam theory" (MBT) wasfirst proposed in the 1960s, illustrating that the transmission and equilibrium method of overburdenpressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called "121mining method", which lays a solid foundation for development of mining science and technology inChina. The "transfer rock beam theory" (TRBT) proposed in the 1980s gives a further understanding forthe transmission path of stope overburden pressure and pressure distribution in high-stress areas. In thisregard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design,making significant contributions to improvement of the coal recovery rate in that era. In the 21st century,the traditional mining technologies faced great challenges and, under the theoretical developmentspioneered by Profs. Minggao Qian and Zhenqi Song, the "cutting cantilever beam theory" (CCBT) wasproposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face,after the first mining cycle, needs one advanced gateway excavation, while the other one is automaticallyformed during the last mining cycle without coal pillars left in the mining area. This method can beimplemented using the CCBT by incorporating the key technologies, including the directional presplittingroof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting systemwith negative Poisson's ratio (NPR) effect material, and remote real-time monitoring technology. TheCCBT and 110 mining method will provide the theoretical and technical basis for the development ofmining industry in China.
基金supported by the National Natural Science Foundation of China (Grant 11172199)
文摘By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474118 and 10274093 and the National Fundamental Research Program of China under Grant No. 2005CB724502
文摘The quantum behavior ofa precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state is possible. Within a simple model with an ultracold ion coupled to a cantilever with only few vibrational quanta, we solve the dynamics of the coupling system by a squeezed-state expansion technique, and can in principle obtain the exact solution of the time-evolution of the coupling system in the absence of the rotating-wave approximation. Comparing to the treatment under the rotating-wave approximation, we present a more accurate description of the quantum behavior of the cantilever.
文摘The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.
基金the National Natural Science Foundation of China(No.11772181)the Program of Shanghai Municipal Education Commission(No.2019-01-07-00-09-E0018)the Key Research Projects of Shanghai Science and Technology Commission(No.18010500100)。
文摘Impact dampers are usually used to suppress single mode resonance. The goal of this paper is to clarify the difference when the impact damper suppresses the resonances of different modes. A cantilever beam equipped with the impact damper is modeled. The elastic contact of the ball and the cantilever beam is described by using the Hertz contact model. The viscous damper between the ball and the cantilever beam is modeled to consume the vibrational energy of the cantilever beam. A piecewise ordinary differential-partial differential equation of the cantilever beam is established, including equations with and without the impact damper. The vibration responses of the cantilever beam with and without the impact damper are numerically calculated. The effects of the impact absorber parameters on the vibration reduction are examined. The results show that multiple resonance peaks of the cantilever beam can be effectively suppressed by the impact damper. Specifically, all resonance amplitudes can be reduced by a larger weight ball. Moreover, the impacting gap is very effective in suppressing the vibration of the cantilever beam. More importantly, there is an optimal impacting gap for each resonance mode of the cantilever beam, but the optimal gap for each mode is different.
基金Project supported by the National Natural Sciences Fund of China(Nos.10302009 and 10672070)the Natural Sciences Fund of Gansu Province(3ZS051-A25-012)the Excellent Doctors' Fund of Lanzhou University
文摘An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51221004)the National Natural Science Foundation of China(Nos.11172260,11072213,and 51375434)the Higher School Specialized Research Fund for the Doctoral Program(No.20110101110016)
文摘The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.
基金the National Natural Science Foundation of China (50479058, 10672032)
文摘Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.
基金Supported by National Natural Science Foundation of China(Grant Nos.51035008,51304019)National Science Foundation of USA(Grant Nos.CMMI-1000830,CMMI-1229532)+1 种基金the University of Maryland Baltimore County Directed Research Initiative Fund ProgramFundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-123A2)
文摘As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.
基金supported by the National Natural Science Foundation of China (Grant Nos.10872003,10932001 and 10525209)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD,GrantNo.2007B2)
文摘Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.
基金The work was supported by the National Natural Science Foundation of China(Grant 11622216).
文摘Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.
基金supported by the Key Natural Science Research of Guangdong Province,China P.R(Grant No.05Z003)the Project of Tackling Key Problem of Guangdong Province,China P.R(Grant No.2006B12401008)the National Natural Science Foundation of China(Grant No.10672067).
文摘This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the peaks of the wavelet coefficients. Secondly, based on the identified crack locations, a simple transform matrix method requiring only the first two tested natural frequencies was used to further identify the crack depth. The present method can be used for crack identification in a complex structure. Numerical results of crack identification of a stepped cantilever beam show that the suggested method is feasible.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 1043203)the Foundation of Ningbo University (No. 2005014), China
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.