The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and lo...The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel.展开更多
A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for...A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.展开更多
Hanping tunnel is a control project of national highway 310 Dahejia to Qingshui highway project.It needs to cross a 330kV high-voltage transmission line under the condition of small clear distance,which requires high ...Hanping tunnel is a control project of national highway 310 Dahejia to Qingshui highway project.It needs to cross a 330kV high-voltage transmission line under the condition of small clear distance,which requires high construction requirements.In view of the difficulties such as shallow buried depth of tunnel and small clear distance between tunnel and tower of high-voltage line,multiple excavation blasting method is adopted,and smooth blasting,charge quantity control and damping hole setting are comprehensively used to reduce the impact on the tower and structure of high-voltage line.In order to ensure the smooth progress of the project,the large-scale finite element analysis software is used to simulate the whole excavation project.The influence of the full-section method and the middle partition wall method(CD method)on the surrounding rock and the high-voltage electric tower is compared.It is found that the CD method can effectively control the displacement of the surrounding rock and the tower on it and the uneven settlement.展开更多
Purpose–The microseismic monitoring technique has great advantages on identifying the location,extent and the mechanism of damage process occurring in rock mass.This study aims to analyze distribution characteristics...Purpose–The microseismic monitoring technique has great advantages on identifying the location,extent and the mechanism of damage process occurring in rock mass.This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.Design/methodology/approach–In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway.An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.Findings–Microseismic events can be divided into high density area,medium density area and low density area according to the density distribution of microseismic events.The positions where the cumulative distribution frequencies of microseismic events are 60 and 80%are identified as the boundaries between high and medium density areas and between medium and low density areas,respectively.The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock,which is affected by the grade of surrounding rock and the span of tunnel.The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters.The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock.The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed.Based on the depth of high excavation damage zone of surrounding rock,the prestressed anchor cable(rod)is designed,and the safety of anchor cable(rod)design parameters is verified by the deformation results of surrounding rock.Originality/value–The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable(rod).展开更多
基金Projects(41072238,51009133)supported by the National Natural Science Foundation of China
文摘The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel.
基金sponsored by projects (Grant Nos. 50978172, 51078318) of the National Natural Science Foundation of ChinaProject (Grant No. 10-0667) supposed by the New Century Excellent Talents in University
文摘A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.
基金National Key Research and Development Program(Research on Key Technologies for the Operation and Maintenance of Typical Urban Traffic Infrastructure Safety)(2017YFC0806000)Chinese Academy of Engineering Institute-Local Cooperation Project(2019-CQ-ZD-4)。
文摘Hanping tunnel is a control project of national highway 310 Dahejia to Qingshui highway project.It needs to cross a 330kV high-voltage transmission line under the condition of small clear distance,which requires high construction requirements.In view of the difficulties such as shallow buried depth of tunnel and small clear distance between tunnel and tower of high-voltage line,multiple excavation blasting method is adopted,and smooth blasting,charge quantity control and damping hole setting are comprehensively used to reduce the impact on the tower and structure of high-voltage line.In order to ensure the smooth progress of the project,the large-scale finite element analysis software is used to simulate the whole excavation project.The influence of the full-section method and the middle partition wall method(CD method)on the surrounding rock and the high-voltage electric tower is compared.It is found that the CD method can effectively control the displacement of the surrounding rock and the tower on it and the uneven settlement.
基金supported by the Fundamental Research Funds for Chinese National Natural Science Foundation under Grant 51678035National Key Research and Development Programs of China under Grant 2017YFC0805401China Railway Corporation Research and Development Program of Science and Technology under Grant 2014004-C.
文摘Purpose–The microseismic monitoring technique has great advantages on identifying the location,extent and the mechanism of damage process occurring in rock mass.This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.Design/methodology/approach–In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway.An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.Findings–Microseismic events can be divided into high density area,medium density area and low density area according to the density distribution of microseismic events.The positions where the cumulative distribution frequencies of microseismic events are 60 and 80%are identified as the boundaries between high and medium density areas and between medium and low density areas,respectively.The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock,which is affected by the grade of surrounding rock and the span of tunnel.The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters.The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock.The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed.Based on the depth of high excavation damage zone of surrounding rock,the prestressed anchor cable(rod)is designed,and the safety of anchor cable(rod)design parameters is verified by the deformation results of surrounding rock.Originality/value–The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable(rod).