To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly ...To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.展开更多
The reflection characteristics of gird structures are calculated by the spatial network method in the case of normal incidence plane electromagnetic wave. The numerical result shows that the grid panels without electr...The reflection characteristics of gird structures are calculated by the spatial network method in the case of normal incidence plane electromagnetic wave. The numerical result shows that the grid panels without electromagnetic wave absorbing foams are not ideal. However, the absorbing ability can be achieved as low as -25 dBsm from 8 GHz to 12 GHz when the grid cells are filled with foam absorbers. Also it is noted from computation that the foam filled grid structures with larger cell size, higher and thinner ribs will improve the absorbing abilities, which illustrates that they can be used as the effective light-weight stealth structures for aeronautical application.展开更多
基金National Natural Science Foundation of China under Grant Nos.51738007,51808099the Fundamental Research Funds for the Central Universities under Grant No.DUT20RC(3)005。
文摘To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.
基金Funded by the National Natural Science Foundation of China(No.10572012)
文摘The reflection characteristics of gird structures are calculated by the spatial network method in the case of normal incidence plane electromagnetic wave. The numerical result shows that the grid panels without electromagnetic wave absorbing foams are not ideal. However, the absorbing ability can be achieved as low as -25 dBsm from 8 GHz to 12 GHz when the grid cells are filled with foam absorbers. Also it is noted from computation that the foam filled grid structures with larger cell size, higher and thinner ribs will improve the absorbing abilities, which illustrates that they can be used as the effective light-weight stealth structures for aeronautical application.