Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
A pin-like beam is a kind of structured light with a special intensity distribution that can be against diffraction,which can be seen as a kind of quasi-nondiffracting beam(Q-NDB).Due to its wide applications,recently...A pin-like beam is a kind of structured light with a special intensity distribution that can be against diffraction,which can be seen as a kind of quasi-nondiffracting beam(Q-NDB).Due to its wide applications,recently,numerous researchers have used optical lenses or on-chip integrated optical diffractive elements to generate this kind of beam.We theoretically verify and experimentally demonstrate an all-fiber solution to generate a subwavelength inverted pin beam by integrating a simple plasma structure on the fiber end surface.The output beams generated by two kinds of plasma structures,i.e.,nanoring slot and nanopetal structure,are investigated and measured experimentally.The results show that both the structures are capable of generating subwavelength beams,and the beam generated using the nanopetal structure has the sidelobe suppression ability along the x-axis direction.Our all-fiber device can be flexibly inserted into liquid environments such as cell cultures,blood,and biological tissue fluids to illuminate or stimulate biological cells and molecules in them.It provides a promising fiber-integrated solution for exploring light–matter interaction with subwavelength resolution in the field of biological research.展开更多
The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The...The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.展开更多
Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs a...Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.展开更多
Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results sh...Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates,and (200) was the preferred orientation.With the increasing of N2 pressure,the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle.At pressure of 0.1 Pa,stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane.All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion,while the stoichiometric TiN film depicted the minimum resistivity,around 19 μΩ·cm.展开更多
An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an app...An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an appropriate Hilbert space. The spectral analysis and semigroup generation of the system operator of the beam system are discussed. Finally, a variable structural control is proposed and a significant result that the solution of the system is exponentially stable under a variable structural control with some appropriate conditions is obtained.展开更多
Based on the vector angular spectrum representation of optical beam and the method of stationary phase, the analytical TE and TM terms of vector Gaussian beam have been presented in the far field. By using the local p...Based on the vector angular spectrum representation of optical beam and the method of stationary phase, the analytical TE and TM terms of vector Gaussian beam have been presented in the far field. By using the local polarization matrix, the polarization properties of the TE and TM terms in the far field are investigated, and it is found that the degree of their polarization is only determined by the spatial location. When the source is completely polarized, the TE and TM terms are both completely polarized in the far field. When the source is completely unpolarized, the TE and TM terms in the far field are partially polarized. The whole beam is also partially polarized except on the propagating axis. Moreover, the degrees of polarization of TE and TM terms are both larger than that of the whole beam.展开更多
The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three differen...The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm2, 1 ×10^13 ions/cm2 and 5 × 10^13 ions/em2 at room temperature. The XRD analysis shows that the tetragonal phase of Sn02 NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine Sn02 NWs exhibit the chemical composition of SnO2 while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO2 is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO2 NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.展开更多
Growth of ln0.52Al0.48As epitaxial layers on lnP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressures (V/III flux ratios from 30 to 300) has been carried out. Analysis performed using low...Growth of ln0.52Al0.48As epitaxial layers on lnP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressures (V/III flux ratios from 30 to 300) has been carried out. Analysis performed using low-temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) shows a strong and prominent dependence of the PL and XRD linewidths on the V/III flux ratio. Under our growth conditions, both the PL and XRD linewidths exhibit a minimum point at a V/III flux ratio of 150 which corresponds to a maximum in the PL intensity and XRD intensity ratio. Flux ratios exceeding 150 result in an increase in both the PL and XRD linewidths corresponding to a reduction in their associated intensities. Room temperature Raman scattering measurements show a narrowing in the lnAs-like and AlAs-like longitudinal-optic (LO)phonon linewidths which broaden at high flux ratios, while the LO phonon frequencies exhibit a gradual reduction as the flux ratio is increased. PL spectra taken at increasing temperatures show a quenching of the main emission peak followed by the evolution of a broad lower energy emission which is possibly associated with deep lying centres. This effect is more prominent in samples grown at lower V/III flux ratios. Hall effect measurements show a gradual reduction in the mobility in correspondence to an increase in the electron concentration as the flux ratio is increased.展开更多
Nb-doped SrTiO3 (STNO) films were grown on (001)-oriented LaAlO3 substrates by a reactive ion beam sputter deposition at various mixing ratios (OMRs) with a substrate temperature of 800oC. The STNO films exhibited goo...Nb-doped SrTiO3 (STNO) films were grown on (001)-oriented LaAlO3 substrates by a reactive ion beam sputter deposition at various mixing ratios (OMRs) with a substrate temperature of 800oC. The STNO films exhibited good crystallinity with an epitaxial orientation as characterized by high-resolution X-ray diffraction, grazing-incidence X-ray diffraction, and in-plane pole figure analysis. A decrease of out-of-plane and in-plane lattice constants was observed with an increase of OMR. The surface morphology of the STNO films showed a very dense fine-grain structure. The root-mean-square roughness was found to be increased as the OMR increased. Moreover, the elemental compositions of the STNO films were examined by X-ray photoelectron spectroscopy.展开更多
This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe sup...This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.展开更多
Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films i...Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.展开更多
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc...The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.展开更多
In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Seve...In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Several even splitters in the terahertz region were designed and one of the silicon-based beam splitters designed to separate one incident beam into four emergent beams has total efficiency up to 92.23 %. Zero-order diffraction efficiency was reduced to less than 0.192 % and the error of uniformity decreased to 6.51 9 10-6. These results break the limitation of even beam splitting based on the traditional scalar theory. In addition, the effects of the incident angle, wavelength, as well as the polarizing angle on the diffraction efficiency and uniformity were also investigated.展开更多
One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for stru...One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.展开更多
Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are stu...Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof,展开更多
The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the...The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPC Ⅱ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESIII beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESIII beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESIII beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ②The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 μPa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adonted hv the headouarters of BEPCⅡ.展开更多
Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, th...The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ + α2 twophase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and crosslayered characteristic.展开更多
To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly ...To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
基金supported by the National Natural Science Foundation of China (Grant Nos.62205079,62065006,62125503,and 62261160388)the Natural Science Foundation of Hubei Province of China (Grant No.2023AFA028)+1 种基金the Innovation Project of GUET Graduate Education (Grant No.2023YCXS214)the Innovation Project of Optics Valley Laboratory (Grant No.OVL2021BG004).
文摘A pin-like beam is a kind of structured light with a special intensity distribution that can be against diffraction,which can be seen as a kind of quasi-nondiffracting beam(Q-NDB).Due to its wide applications,recently,numerous researchers have used optical lenses or on-chip integrated optical diffractive elements to generate this kind of beam.We theoretically verify and experimentally demonstrate an all-fiber solution to generate a subwavelength inverted pin beam by integrating a simple plasma structure on the fiber end surface.The output beams generated by two kinds of plasma structures,i.e.,nanoring slot and nanopetal structure,are investigated and measured experimentally.The results show that both the structures are capable of generating subwavelength beams,and the beam generated using the nanopetal structure has the sidelobe suppression ability along the x-axis direction.Our all-fiber device can be flexibly inserted into liquid environments such as cell cultures,blood,and biological tissue fluids to illuminate or stimulate biological cells and molecules in them.It provides a promising fiber-integrated solution for exploring light–matter interaction with subwavelength resolution in the field of biological research.
文摘The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.
基金supported by the National Natural Science Foundation of China(Grant No.12274105)the Heilongjiang Natural Science Funds for Distinguished Young Scholars(Grant No.JQ2022A001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021020)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province(Grant No.LH2023A006).
文摘Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.
基金Funded by the Guangxi Natural Science Foundation (No.0731005)the Open Foundation of the Key Lab of New Processing Technology for Nonferrous Metals and Materials (No.6XKFJ-06)
文摘Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates,and (200) was the preferred orientation.With the increasing of N2 pressure,the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle.At pressure of 0.1 Pa,stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane.All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion,while the stoichiometric TiN film depicted the minimum resistivity,around 19 μΩ·cm.
文摘An elastic beam system formulated by partial differential equations with initial and boundary conditions is investigated in this paper. An evolution equation corresponding with the beam system is established in an appropriate Hilbert space. The spectral analysis and semigroup generation of the system operator of the beam system are discussed. Finally, a variable structural control is proposed and a significant result that the solution of the system is exponentially stable under a variable structural control with some appropriate conditions is obtained.
文摘Based on the vector angular spectrum representation of optical beam and the method of stationary phase, the analytical TE and TM terms of vector Gaussian beam have been presented in the far field. By using the local polarization matrix, the polarization properties of the TE and TM terms in the far field are investigated, and it is found that the degree of their polarization is only determined by the spatial location. When the source is completely polarized, the TE and TM terms are both completely polarized in the far field. When the source is completely unpolarized, the TE and TM terms in the far field are partially polarized. The whole beam is also partially polarized except on the propagating axis. Moreover, the degrees of polarization of TE and TM terms are both larger than that of the whole beam.
基金Supported by the Department of Physics,the University of AJKHigh Tech.Centralized Instrumentation Lab,the University of AJK,Pakistanthe Experimental Physics Division,and the National Center for Physics,Islamabad Pakistan
文摘The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm2, 1 ×10^13 ions/cm2 and 5 × 10^13 ions/em2 at room temperature. The XRD analysis shows that the tetragonal phase of Sn02 NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine Sn02 NWs exhibit the chemical composition of SnO2 while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO2 is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO2 NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.
文摘Growth of ln0.52Al0.48As epitaxial layers on lnP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressures (V/III flux ratios from 30 to 300) has been carried out. Analysis performed using low-temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) shows a strong and prominent dependence of the PL and XRD linewidths on the V/III flux ratio. Under our growth conditions, both the PL and XRD linewidths exhibit a minimum point at a V/III flux ratio of 150 which corresponds to a maximum in the PL intensity and XRD intensity ratio. Flux ratios exceeding 150 result in an increase in both the PL and XRD linewidths corresponding to a reduction in their associated intensities. Room temperature Raman scattering measurements show a narrowing in the lnAs-like and AlAs-like longitudinal-optic (LO)phonon linewidths which broaden at high flux ratios, while the LO phonon frequencies exhibit a gradual reduction as the flux ratio is increased. PL spectra taken at increasing temperatures show a quenching of the main emission peak followed by the evolution of a broad lower energy emission which is possibly associated with deep lying centres. This effect is more prominent in samples grown at lower V/III flux ratios. Hall effect measurements show a gradual reduction in the mobility in correspondence to an increase in the electron concentration as the flux ratio is increased.
文摘Nb-doped SrTiO3 (STNO) films were grown on (001)-oriented LaAlO3 substrates by a reactive ion beam sputter deposition at various mixing ratios (OMRs) with a substrate temperature of 800oC. The STNO films exhibited good crystallinity with an epitaxial orientation as characterized by high-resolution X-ray diffraction, grazing-incidence X-ray diffraction, and in-plane pole figure analysis. A decrease of out-of-plane and in-plane lattice constants was observed with an increase of OMR. The surface morphology of the STNO films showed a very dense fine-grain structure. The root-mean-square roughness was found to be increased as the OMR increased. Moreover, the elemental compositions of the STNO films were examined by X-ray photoelectron spectroscopy.
文摘This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.
文摘Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.
基金National Natural Science Foundation of China!59575026
文摘The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
基金supported by grants from the Natural Science Foundation of China(Nos.61275167,60878036and 60178023)the Basic Research Project of Shenzhen(Nos.JCYJ20130329103020637,JCYJ20120613112628842,JCYJ20140418095735591 and JC201005280533A)
文摘In this paper, a novel method of a subwavelength binary simple periodic rectangular structure is presented to realize even beam splitting by combining the rigorous couple-wave analysis with the genetic algorithm. Several even splitters in the terahertz region were designed and one of the silicon-based beam splitters designed to separate one incident beam into four emergent beams has total efficiency up to 92.23 %. Zero-order diffraction efficiency was reduced to less than 0.192 % and the error of uniformity decreased to 6.51 9 10-6. These results break the limitation of even beam splitting based on the traditional scalar theory. In addition, the effects of the incident angle, wavelength, as well as the polarizing angle on the diffraction efficiency and uniformity were also investigated.
基金Research Committee,University of Macao,China Under Grant No.RG077/07-08S/09R/YKV/FST
文摘One branch of structural health monitoring (SHM) utilizes dynamic response measurements to assess the structural integrity of civil infrastructures. In particular,modal frequency is a widely adopted indicator for structural damage since its square is proportional to structural stiffness. However,it has been demonstrated in various SHM projects that this indicator is substantially affected by fluctuating environmental conditions. In order to provide reliable and consistent information on the health status of the monitored structures,it is necessary to develop a method to filter this interference. This study attempts to model and quantify the environmental influence on the modal frequencies of reinforced concrete buildings. Daily structural response measurements of a twenty-two story reinforced concrete building were collected and analyzed over a one-year period. The Bayesian spectral density approach was utilized to identify the modal frequencies of this building and it was clearly seen that the temperature and humidity fluctuation induced notable variations. A mathematical model was developed to quantify the environmental effects and model complexity was taken into consideration. Based on a Timoshenko beam model,the full model class was constructed and other reduced-order model class candidates were obtained. Then,the Bayesian modal class selection approach was employed to select the one with the most suitable complexity. The proposed model successfully characterizes the environmental influence on the modal frequencies. Furthermore,the estimated uncertainty of the model parameters allows for assessment of the reliability of the prediction. This study not only improves the understanding about the monitored structure,but also establishes a systematic approach for reliable health assessment of reinforced concrete buildings.
基金provided by the National Natural Science Foundation of China (Nos. 51504259 and 51234005)the Fundamental Research Funds for the Central Universities (No. 2010QZ06)
文摘Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof,
基金Key Programs of Chinese Academy of Sciences(No.KJ95T-03)
文摘The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPC Ⅱ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPC Ⅱ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESIII beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESIII beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESIII beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ②The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 μPa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adonted hv the headouarters of BEPCⅡ.
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
文摘The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ + α2 twophase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and crosslayered characteristic.
基金National Natural Science Foundation of China under Grant Nos.51738007,51808099the Fundamental Research Funds for the Central Universities under Grant No.DUT20RC(3)005。
文摘To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.