A 10 J, 4o us XeCl laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition thresh...A 10 J, 4o us XeCl laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition threshold and plasma plume expansion velocity are obtained. Also, Laser induced pulse on irradiated targets are given.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd doped crystal Nd x Y 1-x A1 3(BO 3) 4 and Nd∶MgO∶LiNbO 3 are made in ...Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd doped crystal Nd x Y 1-x A1 3(BO 3) 4 and Nd∶MgO∶LiNbO 3 are made in this paper, followed by introduction of the methods of experimentation and theoretical calculation for the planar optical waveguides. The refractive index profiles of the optical waveguides are analyzed. The above work offers useful information for study on new type materials for optical communications.展开更多
Changes of surface morphology following XeCI excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and AI2O3-SiC nanocomposite samples ex...Changes of surface morphology following XeCI excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and AI2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastabfe γ-Al2Oa was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); AI203, 40% (max.); Si3N4, 12% (max.).展开更多
Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.7...Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.76 ×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2 →6H13/2 transition was calculated to be 0.53 ×10 20 cm2. The yellow (4F9/2 →6H13/2 transition) to blue (4F9/2 →6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.展开更多
Transparent polycrystaUine neodymiumdoped yttrium aluminum garnet ceramics (Nd:YAG) with better chemical stability, excellent optical and high temperature mechanical property is becoming a new laser host material. ...Transparent polycrystaUine neodymiumdoped yttrium aluminum garnet ceramics (Nd:YAG) with better chemical stability, excellent optical and high temperature mechanical property is becoming a new laser host material. The Nd:YAG precursor powders with loosely dispersed, slightly agglomerated and YAG cubic crystal phase were synthesized at 1100 ℃ by the co-precipitation method combined with the reverse strike,展开更多
Lead halide perovskites have attracted considerable attention as potential candidates for high-performance nano/microlasers,owing to their outstanding optical properties.However,the further development of perovskite m...Lead halide perovskites have attracted considerable attention as potential candidates for high-performance nano/microlasers,owing to their outstanding optical properties.However,the further development of perovskite microlaser arrays(especially based on polycrystalline thin films)produced by the conventional processing techniques is hindered by the chemical instability and surface roughness of the perovskite structures.Herein,we demonstrate a laser patterning of large-scale,highly crystalline perovskite single-crystal films to fabricate reproducible perovskite single-crystal-based microlaser arrays.Perovskite thin films were directly ablated by femtosecond-laser in multiple low-power cycles at a minimum machining line width of approximately 300 nm to realize high-precision,chemically clean,and repeatable fabrication of microdisk arrays.The surface impurities generated during the process can be washed away to avoid external optical loss due to the robustness of the single-crystal film.Moreover,the high-quality,large-sized perovskite single-crystal films can significantly improve the quality of microcavities,thereby realizing a perovskite microdisk laser with narrow linewidth(0.09 nm)and low threshold(5.1µJ/cm2).Benefiting from the novel laser patterning method and the large-sized perovskite single-crystal films,a high power and high color purity laser display with single-mode microlasers as pixels was successfully fabricated.Thus,this study may offer a potential platform for mass-scale and reproducible fabrication of microlaser arrays,and further facilitate the development of highly integrated applications based on perovskite materials.展开更多
The use of a CO2 laser system for fabrication of microfluidic chip on polymethyl methacrylate (PMMA) is presented to reduce fabrication cost and time of chip. The grooving process of the laser system and a model for...The use of a CO2 laser system for fabrication of microfluidic chip on polymethyl methacrylate (PMMA) is presented to reduce fabrication cost and time of chip. The grooving process of the laser system and a model for the depth of microchannels are investigated. The relations between the depth of laser-cut channels and the laser beam power, velocity or the number of passes of the beam along the same channel are evaluated. In the experiments, the laser beam power varies from 0 to 50 W, the laser beam scanning velocity varies from 0 to 1 000 mm/s and the passes vary in the range of 1 to 10 times. Based on the principle of conservation of energy, the influence of the laser beam velocity, the laser power and the number of groove passes are examine. Considering the grooving interval energy loss, a modified mathematical model has been obtained and experimental data show good agreement with the theoretical model. This approach provides a simple way of predicting groove depths. The system provides a cost alternative of the other methods and it is especially useful on research work of rnicrofluidic prototyping due to the short cycle time of production.展开更多
Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target produc...Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.展开更多
We demonstrate the spectroscopic and laser performance before and after 100 Mrad gamma-ray irradiation on an Er,Pr:GYSGG crystal grown by the Czochralski method. The additional absorption of Er,Pr:GYSGG crystal is c...We demonstrate the spectroscopic and laser performance before and after 100 Mrad gamma-ray irradiation on an Er,Pr:GYSGG crystal grown by the Czochralski method. The additional absorption of Er,Pr:GYSGG crystal is close to zero in the 968 nm pumping and 2.7-3 μm laser wavelength regions. The lifetimes of the upper and lower levels show faint decreases after gamma-ray irradiation. The maximum output powers of 542 and 526 mW with the slope efficiencies of 17.7% and 17.0% are obtained, respectively, on the GYSGG/Er,Pr:GYSGG composite crystal before and after the gammaray irradiation. These results suggest that Er,Pr:GYSGG crystal as a laser gain medium possesses a distinguished antiradiation ability for application in space and radiant environments.展开更多
The possible ways and progress of infrared or red laser pumped green and blue laser emissions from a single solid state material doped by rare earth ions are outlined. The green and blue lasers realized from infrared ...The possible ways and progress of infrared or red laser pumped green and blue laser emissions from a single solid state material doped by rare earth ions are outlined. The green and blue lasers realized from infrared laser pumped rare earth doped nonlinear laser crystals by means of self frequency conversion and from infrared laser pumped rare earth doped bulk, fiber and microsphere materials by means of frequency upconversion are introduced in detail. Other kinds of devices and methods are also compared. The typical nonlinear laser crystals such as YAl 3(BO 3) 4, GdAl 3(BO 3) 4, YCa 4O(BO 3) 3 , GdCa 4O(BO 3) 3, and the typical upconversion fluoride fibers are compared and analyzed. The major problems remaining to be solved and the developing trends in the area are also discussed.展开更多
The 4-at.% Tm:Sc_2SiO_5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave(CW) laser o...The 4-at.% Tm:Sc_2SiO_5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave(CW) laser output of(100)-cut Tm:SSO with the dimensions of 3 mm×3 mm×3 mm under laser diode(LD)-pumping is realized. The full width at half maximum(FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW.展开更多
A CaF2-CeF3 disordered crystal containing 1.06% of Er^3+ ions was grown by the temperature gradient technique.Optical absorption and emission spectra recorded at room temperature and at 10 K, luminescence decay curve...A CaF2-CeF3 disordered crystal containing 1.06% of Er^3+ ions was grown by the temperature gradient technique.Optical absorption and emission spectra recorded at room temperature and at 10 K, luminescence decay curve recorded at room temperature, and extended x-ray-absorption fine structure spectra were analyzed with an intention to assess the laser potential related to the ^4I13/2→^4I15/2 transition of Er^3+. In addition, the thermal diffusivity of the crystal was measured at room temperature. The analysis of room-temperature spectra revealed that the ^4I13/2 emission is long-lived with a radiative lifetime value of 5.5 ms, peak emission cross section of 0.73 × 10^-20 cm^2, and large spectral width pointing at the tunability of the emission wavelength in the region stretching from approximately 1480 nm to 1630 nm. The energies of the crystal field components for the ground and excited multiplets determined from low-temperature absorption and emission spectra made it possible to predict successfully the spectral position and shape of the room-temperature ^4I13/2→^4I15/2 emission band. Based on the correlation of the optical spectra and dynamics of the luminescence decay, it was concluded that in contrast to Yb^3+ ions in heavily doped CaF2 erbium ions in the CaF2-CeF3 crystal reside in numerous sites with dissimilar relaxation rates.展开更多
substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost...substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.展开更多
Optical planar waveguides in Yba+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling m...Optical planar waveguides in Yba+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He Ne laser at 633 nm The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide. The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides, suggesting the fabricated structures for possible applications as waveguide lasers.展开更多
Crystal of Yb^3+-doped Ba3Gd(BO3)3 has been grown by the Czochralski method. The spectroscopic characterizations have been investigated at room temperature. The Yb^3+:Ba3Gd(BO3)3 crystal exhibits broad absorpti...Crystal of Yb^3+-doped Ba3Gd(BO3)3 has been grown by the Czochralski method. The spectroscopic characterizations have been investigated at room temperature. The Yb^3+:Ba3Gd(BO3)3 crystal exhibits broad absorption at 976 nm with FWHM of 7 nm and large overall spitting of ^2F7/2 manifold (823 cm^-1). The absorption and emission cross sections are 5.09×10^-21 cm^2 at 976 nm and 0.97×10^-21 cm^2 at 1040 nm, respectively. The fluorescence lifetime is 2.84 ms.展开更多
The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exh...The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.展开更多
The crystal growth,x-ray diffraction pattern,absorption spectrum,emission spectrum,and fluorescence lifetime of a Tb:Lu2O3 single crystal were studied.Excited at 483 nm,the peak absorption cross-section was calculate...The crystal growth,x-ray diffraction pattern,absorption spectrum,emission spectrum,and fluorescence lifetime of a Tb:Lu2O3 single crystal were studied.Excited at 483 nm,the peak absorption cross-section was calculated to be 3.5×10(-22)cm2,and the full width at half maximum was found to be 2.85 nm.The Judd-Ofelt(J-O)intensity parameters 2,4,and 6 were computed to be 3.79×10(-20)cm2,1.30×10(-20)cm2,and 1.08×10(-20)cm2,with a spectroscopic quality factor 4/6 being 1.20.The emission cross-sections of green emission around 543 nm and yellow emission around 584 nm were calculated to be 9.43×10(-22)cm2 and 1.32×10(-22)cm2,respectively.The fluorescence lifetimeτexp of -5D4 was fitted to be 1.13 ms.The data suggest that the Tb:Lu2O3 crystal could be a potential candidate for green and yellow laser operation.展开更多
The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 =...The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 = 7.31×10^-20 and Ω6 = 6.91×10^-20 cm^2. The radiative lifetime is 100 μs, and the quantum efficiency is 93.9%. The fluorescence branch ratios were calculated to be β1 = 0.441, β2 = 0.469,β3 = 0.086 and β4=0.004.展开更多
The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with ...The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with space group I41/a(C4h^6) and cell parameters: a = 5.1986 and c = 11.2652A. The hardness is about 5.0 Mohs' scale. The specific heat is 0.40 J·g^-1·K^-1 at 50 oC. The thermal expansion coefficients for a-and c-axes are 1.314×10^-5 and 2.052×10^-5 K^-1,respectively. The room-temperature polarized absorption and emission spectra and the fluorescence decay curve was measured. The parameters of oscillator strengths,the spontaneous transition probabilities,the fluorescence branching ratios,the radiative lifetimes,and the emission cross sections have been investigated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The absorption cross-section is 5.19×10^-20 cm^2 at 805 nm for π-polarization and its line width is 15 nm; the emission cross section is 1.726×10^-19 cm^2 at 1060.5 nm for π-polarization. The fluorescence and radiative lifetimes are 86 and 158 μs,respectively. The fluorescence quantum efficiency is 54.43%.展开更多
文摘A 10 J, 4o us XeCl laser interaction with LY12 aluminum and optical glass K9 targets is reported. The properties of laser-produced plasma (LPP) are analyzed. As a result, some parameters such as plasma ignition threshold and plasma plume expansion velocity are obtained. Also, Laser induced pulse on irradiated targets are given.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
文摘Lanthanide has attracted much attention in the field of optical communications in recent years. Some property analyses on optical waveguide of Nd doped crystal Nd x Y 1-x A1 3(BO 3) 4 and Nd∶MgO∶LiNbO 3 are made in this paper, followed by introduction of the methods of experimentation and theoretical calculation for the planar optical waveguides. The refractive index profiles of the optical waveguides are analyzed. The above work offers useful information for study on new type materials for optical communications.
文摘Changes of surface morphology following XeCI excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and AI2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastabfe γ-Al2Oa was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); AI203, 40% (max.); Si3N4, 12% (max.).
基金Project supported by the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences(Grant No.2008DP173016)the National Key Research and Development Program of China(Grant No.2016YFB1102202)the National Key Research and Development Program of China(Grant No.2016YFB0701002)
文摘Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86 × 10-20 cm2, 2.02 × 10-20 cm2, and 1.76 ×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2 →6H13/2 transition was calculated to be 0.53 ×10 20 cm2. The yellow (4F9/2 →6H13/2 transition) to blue (4F9/2 →6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.
文摘Transparent polycrystaUine neodymiumdoped yttrium aluminum garnet ceramics (Nd:YAG) with better chemical stability, excellent optical and high temperature mechanical property is becoming a new laser host material. The Nd:YAG precursor powders with loosely dispersed, slightly agglomerated and YAG cubic crystal phase were synthesized at 1100 ℃ by the co-precipitation method combined with the reverse strike,
基金the support from the National Natural Science Foundation of China (No. 61925506)the Natural Science Foundation of Shanghai (No. 20JC1414605)+1 种基金Hangzhou Science and Technology Bureau of Zhejiang Province (No. TD2020002)the Academic/Technology Research Leader Program of Shanghai (23XD1404500)
文摘Lead halide perovskites have attracted considerable attention as potential candidates for high-performance nano/microlasers,owing to their outstanding optical properties.However,the further development of perovskite microlaser arrays(especially based on polycrystalline thin films)produced by the conventional processing techniques is hindered by the chemical instability and surface roughness of the perovskite structures.Herein,we demonstrate a laser patterning of large-scale,highly crystalline perovskite single-crystal films to fabricate reproducible perovskite single-crystal-based microlaser arrays.Perovskite thin films were directly ablated by femtosecond-laser in multiple low-power cycles at a minimum machining line width of approximately 300 nm to realize high-precision,chemically clean,and repeatable fabrication of microdisk arrays.The surface impurities generated during the process can be washed away to avoid external optical loss due to the robustness of the single-crystal film.Moreover,the high-quality,large-sized perovskite single-crystal films can significantly improve the quality of microcavities,thereby realizing a perovskite microdisk laser with narrow linewidth(0.09 nm)and low threshold(5.1µJ/cm2).Benefiting from the novel laser patterning method and the large-sized perovskite single-crystal films,a high power and high color purity laser display with single-mode microlasers as pixels was successfully fabricated.Thus,this study may offer a potential platform for mass-scale and reproducible fabrication of microlaser arrays,and further facilitate the development of highly integrated applications based on perovskite materials.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No.2002AA421150)Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20030335091).
文摘The use of a CO2 laser system for fabrication of microfluidic chip on polymethyl methacrylate (PMMA) is presented to reduce fabrication cost and time of chip. The grooving process of the laser system and a model for the depth of microchannels are investigated. The relations between the depth of laser-cut channels and the laser beam power, velocity or the number of passes of the beam along the same channel are evaluated. In the experiments, the laser beam power varies from 0 to 50 W, the laser beam scanning velocity varies from 0 to 1 000 mm/s and the passes vary in the range of 1 to 10 times. Based on the principle of conservation of energy, the influence of the laser beam velocity, the laser power and the number of groove passes are examine. Considering the grooving interval energy loss, a modified mathematical model has been obtained and experimental data show good agreement with the theoretical model. This approach provides a simple way of predicting groove depths. The system provides a cost alternative of the other methods and it is especially useful on research work of rnicrofluidic prototyping due to the short cycle time of production.
基金supported by the Key Research and Development Program of Hebei Province(No.21351501D)A Provincial and Ministerial Scientific Research Project(LJ20212C031165)Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA(KYSZJQZL2210)。
文摘Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB1102301)the National Natural Science Foundation of China(Grant Nos.51272254,61405206,and 51502292)the Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology,Electronic Engineering Institute,China(Grant No.SKL2015KF01)
文摘We demonstrate the spectroscopic and laser performance before and after 100 Mrad gamma-ray irradiation on an Er,Pr:GYSGG crystal grown by the Czochralski method. The additional absorption of Er,Pr:GYSGG crystal is close to zero in the 968 nm pumping and 2.7-3 μm laser wavelength regions. The lifetimes of the upper and lower levels show faint decreases after gamma-ray irradiation. The maximum output powers of 542 and 526 mW with the slope efficiencies of 17.7% and 17.0% are obtained, respectively, on the GYSGG/Er,Pr:GYSGG composite crystal before and after the gammaray irradiation. These results suggest that Er,Pr:GYSGG crystal as a laser gain medium possesses a distinguished antiradiation ability for application in space and radiant environments.
文摘The possible ways and progress of infrared or red laser pumped green and blue laser emissions from a single solid state material doped by rare earth ions are outlined. The green and blue lasers realized from infrared laser pumped rare earth doped nonlinear laser crystals by means of self frequency conversion and from infrared laser pumped rare earth doped bulk, fiber and microsphere materials by means of frequency upconversion are introduced in detail. Other kinds of devices and methods are also compared. The typical nonlinear laser crystals such as YAl 3(BO 3) 4, GdAl 3(BO 3) 4, YCa 4O(BO 3) 3 , GdCa 4O(BO 3) 3, and the typical upconversion fluoride fibers are compared and analyzed. The major problems remaining to be solved and the developing trends in the area are also discussed.
基金supported by the Shanghai Municipal Engineering Research Center for Sapphire Crystals,China(Grant No.14DZ2252500)the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences(Grant No.2008DP17301)+4 种基金the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China and the China Academy of Engineering Physics Joint Fund(Grant No.U1530152)the National Natural Science Foundation of China(Grant Nos.61475177 and 61621001)the Shanghai Municipal Natural Science Foundation,China(Grant No.13ZR1446100)the MDE Key Laboratory of Advanced Micro-Structured Materials
文摘The 4-at.% Tm:Sc_2SiO_5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave(CW) laser output of(100)-cut Tm:SSO with the dimensions of 3 mm×3 mm×3 mm under laser diode(LD)-pumping is realized. The full width at half maximum(FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW.
基金Project supported by Shanghai Engineering Research Center for Sapphire Crystals,China(Grant No.14DZ2252500)the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics Chinese Academy of Sciences(Grant No.2008DP17301)+4 种基金the Fundamental Research Funds for the Central Universities of Chinathe National Natural Science Foundation of China and China Academy of Engineering Physics Joint Fund(Grant No.U1530152)the National Natural Science Foundation of China(Grant Nos.61475177 and 61621001)the Natural Science Foundation of Shanghai Municiple,China(Grant No.13ZR1446100)the MOE Key Laboratory of Advanced Micro-Structured Materials of China
文摘A CaF2-CeF3 disordered crystal containing 1.06% of Er^3+ ions was grown by the temperature gradient technique.Optical absorption and emission spectra recorded at room temperature and at 10 K, luminescence decay curve recorded at room temperature, and extended x-ray-absorption fine structure spectra were analyzed with an intention to assess the laser potential related to the ^4I13/2→^4I15/2 transition of Er^3+. In addition, the thermal diffusivity of the crystal was measured at room temperature. The analysis of room-temperature spectra revealed that the ^4I13/2 emission is long-lived with a radiative lifetime value of 5.5 ms, peak emission cross section of 0.73 × 10^-20 cm^2, and large spectral width pointing at the tunability of the emission wavelength in the region stretching from approximately 1480 nm to 1630 nm. The energies of the crystal field components for the ground and excited multiplets determined from low-temperature absorption and emission spectra made it possible to predict successfully the spectral position and shape of the room-temperature ^4I13/2→^4I15/2 emission band. Based on the correlation of the optical spectra and dynamics of the luminescence decay, it was concluded that in contrast to Yb^3+ ions in heavily doped CaF2 erbium ions in the CaF2-CeF3 crystal reside in numerous sites with dissimilar relaxation rates.
文摘substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077070, 10876009, and 51002181)the One Hundred Talents Programs of the Chinese Academy of Sciences
文摘Optical planar waveguides in Yba+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He Ne laser at 633 nm The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide. The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides, suggesting the fabricated structures for possible applications as waveguide lasers.
基金the National Natural Science Foundation of China (No. 60508007 and 60508012)
文摘Crystal of Yb^3+-doped Ba3Gd(BO3)3 has been grown by the Czochralski method. The spectroscopic characterizations have been investigated at room temperature. The Yb^3+:Ba3Gd(BO3)3 crystal exhibits broad absorption at 976 nm with FWHM of 7 nm and large overall spitting of ^2F7/2 manifold (823 cm^-1). The absorption and emission cross sections are 5.09×10^-21 cm^2 at 976 nm and 0.97×10^-21 cm^2 at 1040 nm, respectively. The fluorescence lifetime is 2.84 ms.
基金supported by the National Natural Science Foundation of China (No. 60808033)Natural Science Foundation of Jiangxi Province (No. 2008GZW0012)the Science Project of the Education Commission of Jiangxi Province (No. GJJ08345)
文摘The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.
基金Project supported by the National Natural Science Foundation of China(Grant No.61621001)the National Key Research and Development Program of China(Grant Nos.2016YFB1102202 and 2016YFB0701002)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe help of MOE Key Laboratory of Advanced Micro-Structured Materials and School of Physical Science and Technology,Guangxi University
文摘The crystal growth,x-ray diffraction pattern,absorption spectrum,emission spectrum,and fluorescence lifetime of a Tb:Lu2O3 single crystal were studied.Excited at 483 nm,the peak absorption cross-section was calculated to be 3.5×10(-22)cm2,and the full width at half maximum was found to be 2.85 nm.The Judd-Ofelt(J-O)intensity parameters 2,4,and 6 were computed to be 3.79×10(-20)cm2,1.30×10(-20)cm2,and 1.08×10(-20)cm2,with a spectroscopic quality factor 4/6 being 1.20.The emission cross-sections of green emission around 543 nm and yellow emission around 584 nm were calculated to be 9.43×10(-22)cm2 and 1.32×10(-22)cm2,respectively.The fluorescence lifetimeτexp of -5D4 was fitted to be 1.13 ms.The data suggest that the Tb:Lu2O3 crystal could be a potential candidate for green and yellow laser operation.
基金This work was supported by the National Natural Science Foundation of China (60378031) and Key Project of Science and Technology of Fujian Province (2001H1007)
文摘The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 = 7.31×10^-20 and Ω6 = 6.91×10^-20 cm^2. The radiative lifetime is 100 μs, and the quantum efficiency is 93.9%. The fluorescence branch ratios were calculated to be β1 = 0.441, β2 = 0.469,β3 = 0.086 and β4=0.004.
基金Supported by the National Natural Science Foundation of China (No.60808033)Natural Science Foundation of Jiangxi Province (No.2008GZW0012)
文摘The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with space group I41/a(C4h^6) and cell parameters: a = 5.1986 and c = 11.2652A. The hardness is about 5.0 Mohs' scale. The specific heat is 0.40 J·g^-1·K^-1 at 50 oC. The thermal expansion coefficients for a-and c-axes are 1.314×10^-5 and 2.052×10^-5 K^-1,respectively. The room-temperature polarized absorption and emission spectra and the fluorescence decay curve was measured. The parameters of oscillator strengths,the spontaneous transition probabilities,the fluorescence branching ratios,the radiative lifetimes,and the emission cross sections have been investigated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The absorption cross-section is 5.19×10^-20 cm^2 at 805 nm for π-polarization and its line width is 15 nm; the emission cross section is 1.726×10^-19 cm^2 at 1060.5 nm for π-polarization. The fluorescence and radiative lifetimes are 86 and 158 μs,respectively. The fluorescence quantum efficiency is 54.43%.