All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demo...All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of tile recovered cluck is cffcctivcly improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.展开更多
基金This work was supported by the National Natural Sci-ence Foundation of China (No. 90401025)the Key Project of MOE (No. 105036).
文摘All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of tile recovered cluck is cffcctivcly improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.
基金the key laboratory of optoelectronic science and technology for medicine (Fu-jian Normal University),Ministry of Education.China under Grant No.JYG0503