期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V 被引量:3
1
作者 Shang Sui Youxiang Chew +3 位作者 Fei Weng Chaolin Tan Zhenglin Du Guijun Bi 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期132-148,共17页
It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on... It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys. 展开更多
关键词 Ni addition microstructure refinement laser aided additive manufacturing titanium alloys strengthening mechanism
下载PDF
Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe_(49.5)Mn_(30)Co_(10)Cr_(10)C_(0.5)multicomponent alloy 被引量:1
2
作者 Y.Chew Z.G.Zhu +4 位作者 F.Weng S.B.Gao F.L.Ng B.Y Lee G.J.Bi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第18期38-46,共9页
Laser aided additive manufacturing(LAAM)was used to fabricate bulk Fe_(49.5)Mn_(30)Co_(10)Cr_(10)C_(0.5)interstitial multicomponent alloy using pre-alloyed powder.The room temperature yield strength(σ_y),ultimate ten... Laser aided additive manufacturing(LAAM)was used to fabricate bulk Fe_(49.5)Mn_(30)Co_(10)Cr_(10)C_(0.5)interstitial multicomponent alloy using pre-alloyed powder.The room temperature yield strength(σ_y),ultimate tensile strength(σ_(UTS))and elongation(ε_(UTS))were 645 MPa,917 MPa and 27.0%respectively.The asbuilt sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation.These cellular structures together with oxide particle inclusions were deemed to strengthen the material.The other contributing components include dislocation strengthening,friction stress and grain boundary strengthening.The highε_(UTS)was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity(TWIP and TRIP).Tensile tests performed at-40℃and-130℃demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively.However,almost no twinning was observed in the fractured sample tested at-40℃and-130℃.Instead,higher fraction of strain-induced hexagonal close-packed(HCP)εphase transformation of 21.2%were observed for fractured sample tested at-40℃,compared with 6.3%in fractured room temperature sample. 展开更多
关键词 Multicomponent alloys laser aided additive manufacturing additive manufacturing MICROSTRUCTURE Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部