A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder ble...A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix.展开更多
The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v....The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v.According to the calculated results, certain limits of P and v are necessary in order to obtain crack free coatings. It agrees well with the experimental results.展开更多
Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni ...Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni powders were blown into the melting pool by a six-hole coaxial nozzle powder injection system. Exothermic reactions between Ti and Ni took place in the melting pool, and a cladding layer of titanium nickel intermetallic compounds was produced. Laser nitriding in a nitrogen-rich atmosphere followed the production of the cladding layer, and formed a golden yellow TiN layer over it. An optical and a scanning electron microscope were used to investigate the microstructures and measure the thicknesses of the cladding layer and the TiN layer. Phase identification was carried out by XRD. For the nitriding sample, the microhardness profile of the clad layer was tested. The optimal process parameters of the in situ synthesis of titanium nickel intermetallic compounds were obtained.展开更多
基金Project (2010CB731705) supported by the National Basic Research Program of China
文摘A wear resistant TiB-TiC reinforced TiNi-Ti2Ni intermetallic matrix composite coating(TiB-TiC/TiNi-Ti2Ni) was prepared on Ti-6.5Al-2Zr-1Mo-1V titanium alloy by the laser cladding process using Ti+Ni+B4C powder blends as the precursor materials.Microstructure and worn surface morphologies of the coating were characterized by optical microscopy(OM),scan electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive X-ray analysis(EDS) and atomic force microscopy(AFM).Wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature.The results indicate that the laser clad coating has a unique microstructure composed of flower-like TiB-TiC eutectic ceramics uniformly distributed in the TiNi-Ti2Ni dual-phase intermetallic matrix.The coating exhibits an excellent wear resistance because of combined action of hard TiB-TiC eutectic ceramic reinforcements and ductile TiNi-Ti2Ni dual-phase intermetallic matrix.
文摘The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v.According to the calculated results, certain limits of P and v are necessary in order to obtain crack free coatings. It agrees well with the experimental results.
文摘Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni powders were blown into the melting pool by a six-hole coaxial nozzle powder injection system. Exothermic reactions between Ti and Ni took place in the melting pool, and a cladding layer of titanium nickel intermetallic compounds was produced. Laser nitriding in a nitrogen-rich atmosphere followed the production of the cladding layer, and formed a golden yellow TiN layer over it. An optical and a scanning electron microscope were used to investigate the microstructures and measure the thicknesses of the cladding layer and the TiN layer. Phase identification was carried out by XRD. For the nitriding sample, the microhardness profile of the clad layer was tested. The optimal process parameters of the in situ synthesis of titanium nickel intermetallic compounds were obtained.