Laser cladded coatings of TiCN were produced on the surface of titanium. To obtain the optimal techniques, several conditions were tested by varying the laser scanning rate. The choice of shielding gas was also studie...Laser cladded coatings of TiCN were produced on the surface of titanium. To obtain the optimal techniques, several conditions were tested by varying the laser scanning rate. The choice of shielding gas was also studied. The cladded coatings were then evaluated from the surface mechanics point of view based on their microhardness. The microstructure of some interesting samples was investigated by optical micrographs (OM). The results showed that under the condition of fixed pulse frequency and pulse width, the laser scanning rate and the shielding gas are the main factors influencing the components of coatings. TiCN coatings were decompounded and oxidized during the cladding process in the condition of no shielding gas of N2. X-ray diffraction results indicated that the composite coatings composed of TiCN, TiC, Ti2N, and TiO2 were produced using appropriate techniques. The results indicated that the best condition in terms of the surface microhardness is obtained when the scanning rate is 1.5mm/s, the pulse frequency is 15Hz, the pulse width is 3.0ms, and N2 is chosen as the shielding gas. The microhardness of the composite coatings is about 1331kg · mm^-2, which is about 4 times that of the substrate. The optical micrographs indicated that the cladding zone is made up of TiCN, TiO2 and some interdendritic Ti, but the diffusion zone mainly consists of the dendrites phase, and the cladded depth is about 80μm, which is more than 2 times that of the laser nitrided sample. There were no microcracks or air bubbles in the cladded sample, which was cladded using the above optimal techniques.展开更多
Laser cladding experiments were done on a 5-kW continuous wave CO2 laser to synthesize TiC and TiB rein- fowed titanium matrix composite coatings on Ti-6AI-4V alloy with a mixture of Ti and B4C precursor powder. The t...Laser cladding experiments were done on a 5-kW continuous wave CO2 laser to synthesize TiC and TiB rein- fowed titanium matrix composite coatings on Ti-6AI-4V alloy with a mixture of Ti and B4C precursor powder. The ther- modynamics of the reactions were calculated and analyzed. The microstructure and phase evolution of TiB and TiC com- posites were investigated. The results showed that the chemical reaction between Ti and B4C would release much heat, and these compounds, TiC, TiB, and small amount of TiB2, can be formed on the surface of Ti-6AI-4V alloy if the supplied en- ergy is sufficient to excite the reaction among the initial products. A good metallurgical bond between the coating and the substrate can be achieved. The microhardness of coating was irregular and the maximum value was approximately HV600.展开更多
Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of d...Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted.展开更多
Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni ...Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni powders were blown into the melting pool by a six-hole coaxial nozzle powder injection system. Exothermic reactions between Ti and Ni took place in the melting pool, and a cladding layer of titanium nickel intermetallic compounds was produced. Laser nitriding in a nitrogen-rich atmosphere followed the production of the cladding layer, and formed a golden yellow TiN layer over it. An optical and a scanning electron microscope were used to investigate the microstructures and measure the thicknesses of the cladding layer and the TiN layer. Phase identification was carried out by XRD. For the nitriding sample, the microhardness profile of the clad layer was tested. The optimal process parameters of the in situ synthesis of titanium nickel intermetallic compounds were obtained.展开更多
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti...Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.展开更多
To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder ...To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.展开更多
Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-c...Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.展开更多
TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scan...TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.展开更多
The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser c...The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser cladding. The microstructure investigation showed that the petals-shaped particles and granular particles were two main morphology of titanium carbide particles. And a few spiral-shaped titanium carbide pattern and eutectic titanium carbide appeared on the cross-sections of the coating. The spiral-shaped titanium carbide pattern composed of some slender arc-shape titanium carbide particles and the eutectic titanium carbide was fine. The morphology and distribution of the spiral-shaped titanium carbide patterns and eutectic titanium carbide confirmed that their growth mechanism was the dissolution-precipitation mechanism and was affected by the convection behavior of the laser melted pool. The spiral-shaped titanium carbide pattern would precipitate out the high-temperature melts under high-speed convection. The eutectic titanium carbide would precipitate out when the melts stopped convection or dropped to eutectic temperature.展开更多
WC7Co/Ti6Al4V composite coatings are deposited on the pure Ti substrate by pulse laser cladding(LC).During the laser melting process,the decomposition of WC7Co particles will lead to the evolution of microstructure an...WC7Co/Ti6Al4V composite coatings are deposited on the pure Ti substrate by pulse laser cladding(LC).During the laser melting process,the decomposition of WC7Co particles will lead to the evolution of microstructure and phases,which is directly related to the wear resistance and mechanism of composite coating.The microstructural evolution,phase compositions and interface reaction of WC7Co/Ti6Al4V composite coating were examined by scanning electron microscopy,energydispersive spectrum and X-ray diffraction(XRD).The hardness of different structures and abrasive resistance of composite coating were measured.The results show that the typical microstructure of LC WC7Co/Ti6Al4V composite coating can be classified into dissolved WC7Co composite structure and un-dissolved WC7Co structure.According to XRD results,there are Ti solid solution,W,TiC,VC,Co3W3C and secondary W2C in composite coating.The eutectic structure formed by the dissolved WC7Co particles consisted of W,W2C,TiC and P-Ti solid solution.The mean hardness of different structures exhibits a significant gradient distribution in composite coating.A reaction layer composed of TiC,W and W2C is also generated onto the interface between un-dissolved WC7Co particles and Ti6Al4V alloy matrix.The abrasive mechanisms of WC7Co/Ti6Al4V composite coating are mainly adhesive wear and oxidation wear during the dry sliding process.展开更多
目的提高钛合金表面的耐磨性能。方法在TiB_2:TiC=1:3的粉末配比下,添加不同质量分数Y_2O_3稀土氧化物,制备成膏状混合粉末。采用5 k W横流CO_2激光器,在TC4钛合金表面激光熔覆掺Y_2O_3的TiB_2和TiC粉末,制备耐磨性复合涂层。通过扫描...目的提高钛合金表面的耐磨性能。方法在TiB_2:TiC=1:3的粉末配比下,添加不同质量分数Y_2O_3稀土氧化物,制备成膏状混合粉末。采用5 k W横流CO_2激光器,在TC4钛合金表面激光熔覆掺Y_2O_3的TiB_2和TiC粉末,制备耐磨性复合涂层。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)对激光熔覆层的微观形貌和组织成分进行了分析;用显微维氏硬度计对熔覆层的显微硬度进行了测量;用万能摩擦磨损试验机对熔覆层的耐磨性能进行了测试。结果添加4%Y_2O_3后,熔覆层中部组织明显细化,结合区由致密组织结构转变为晶须网状结构;熔覆层的最高显微硬度为1404.6HV0.2,是基体的3.7倍;熔覆层的磨损量减少了66.67%,且其摩擦系数有明显的降低。结论添加4%Y_2O_3对TC4钛合金表面激光熔覆TiB/TiC复合熔覆层耐磨性能有显著的提高。展开更多
文摘Laser cladded coatings of TiCN were produced on the surface of titanium. To obtain the optimal techniques, several conditions were tested by varying the laser scanning rate. The choice of shielding gas was also studied. The cladded coatings were then evaluated from the surface mechanics point of view based on their microhardness. The microstructure of some interesting samples was investigated by optical micrographs (OM). The results showed that under the condition of fixed pulse frequency and pulse width, the laser scanning rate and the shielding gas are the main factors influencing the components of coatings. TiCN coatings were decompounded and oxidized during the cladding process in the condition of no shielding gas of N2. X-ray diffraction results indicated that the composite coatings composed of TiCN, TiC, Ti2N, and TiO2 were produced using appropriate techniques. The results indicated that the best condition in terms of the surface microhardness is obtained when the scanning rate is 1.5mm/s, the pulse frequency is 15Hz, the pulse width is 3.0ms, and N2 is chosen as the shielding gas. The microhardness of the composite coatings is about 1331kg · mm^-2, which is about 4 times that of the substrate. The optical micrographs indicated that the cladding zone is made up of TiCN, TiO2 and some interdendritic Ti, but the diffusion zone mainly consists of the dendrites phase, and the cladded depth is about 80μm, which is more than 2 times that of the laser nitrided sample. There were no microcracks or air bubbles in the cladded sample, which was cladded using the above optimal techniques.
基金financially supported by the National "973" Research Project (No. 2006CB605206-1)
文摘Laser cladding experiments were done on a 5-kW continuous wave CO2 laser to synthesize TiC and TiB rein- fowed titanium matrix composite coatings on Ti-6AI-4V alloy with a mixture of Ti and B4C precursor powder. The ther- modynamics of the reactions were calculated and analyzed. The microstructure and phase evolution of TiB and TiC com- posites were investigated. The results showed that the chemical reaction between Ti and B4C would release much heat, and these compounds, TiC, TiB, and small amount of TiB2, can be formed on the surface of Ti-6AI-4V alloy if the supplied en- ergy is sufficient to excite the reaction among the initial products. A good metallurgical bond between the coating and the substrate can be achieved. The microhardness of coating was irregular and the maximum value was approximately HV600.
基金supported by the Shandong Provincial Key Research and Development Plan(Project No.2016GGX102018)Shandong Provincial Natural Science Foundation,China(Project No.ZR2017MEE063)
文摘Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted.
文摘Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni powders were blown into the melting pool by a six-hole coaxial nozzle powder injection system. Exothermic reactions between Ti and Ni took place in the melting pool, and a cladding layer of titanium nickel intermetallic compounds was produced. Laser nitriding in a nitrogen-rich atmosphere followed the production of the cladding layer, and formed a golden yellow TiN layer over it. An optical and a scanning electron microscope were used to investigate the microstructures and measure the thicknesses of the cladding layer and the TiN layer. Phase identification was carried out by XRD. For the nitriding sample, the microhardness profile of the clad layer was tested. The optimal process parameters of the in situ synthesis of titanium nickel intermetallic compounds were obtained.
基金Project (51045004) supported by the National Natural Science Foundation of ChinaProject (2006AA03A219) supported by Hi-tech Research and Development Program of ChinaProject (YYYJ-0913) supported by Knowledge Innovation Project in Chinese Academy of Sciences
文摘Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.
基金Projects(2019J01813,2018J01557) supported by the Natural Science Foundation of Fujian Province,ChinaProject(2018H0031) supported by the Guiding Science Program of Fujian Province,ChinaProject(2018GP2002) supported by the Science and Technology Program of Putian City,China
文摘To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.
文摘Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2011BAE12B03)the National Natural Science Foundation of China(Grant No.11372110)
文摘TiCx-NiTi2/Ti cermet composite coatings C1 and C2 with gradient TiCx reinforcements were prepared on TC4 titanium alloy by laser cladding method.The microstructure and phase compositions were analyzed by means of scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffraction(XRD)meter.The TiCx exhibited a dendritic microstructure,and homogeneously dispersed in the Ti-based matrix where NiTi2 was embedded.With increasing ingredient supercooling,temperature gradient and cooling temperature,the dendrites displayed a finer morphology with longer primary trunks and intensified side branches in the dilution zone.But the smoothed,coarse columnar ones became dominant in the upper clad layer due to the repeated energy input during multi-track cladding.The Vickers microhardness presented a linear change trend through the cross-sections,which well confirmed the gradient distribution of TiCx.With more TiCx,C1 presented higher hardness than C2.
基金Funded by the Shanghai Science and Technology Committee Innovation(17JC1400600 and 17JC1400601)the National Natural Science Foundation of China(51471105)+1 种基金the Graduate Students’Innovative Research Projects of Shanghai University of Engineering Science(17KY0513)the College Student Innovation Training Projects of Shanghai University of Engineering Scienc(CX1805007)
文摘The titanium carbide phase was synthesized in laser melted-pool in situ as the reinforced particles of nickel based composite coating on Ti-6Al-4V alloy surface using the nickel and graphite blending powder by laser cladding. The microstructure investigation showed that the petals-shaped particles and granular particles were two main morphology of titanium carbide particles. And a few spiral-shaped titanium carbide pattern and eutectic titanium carbide appeared on the cross-sections of the coating. The spiral-shaped titanium carbide pattern composed of some slender arc-shape titanium carbide particles and the eutectic titanium carbide was fine. The morphology and distribution of the spiral-shaped titanium carbide patterns and eutectic titanium carbide confirmed that their growth mechanism was the dissolution-precipitation mechanism and was affected by the convection behavior of the laser melted pool. The spiral-shaped titanium carbide pattern would precipitate out the high-temperature melts under high-speed convection. The eutectic titanium carbide would precipitate out when the melts stopped convection or dropped to eutectic temperature.
基金National Natural Science Foundation of China(51701165)the Natural Science Foundation of Shaanxi Province(2018JM5005)+1 种基金Postdoctoral Science Foundation of China(2017M623334XB)Shaanxi Province Postdoctoral Science Foundation(2018BSHQYXMZZ36).
文摘WC7Co/Ti6Al4V composite coatings are deposited on the pure Ti substrate by pulse laser cladding(LC).During the laser melting process,the decomposition of WC7Co particles will lead to the evolution of microstructure and phases,which is directly related to the wear resistance and mechanism of composite coating.The microstructural evolution,phase compositions and interface reaction of WC7Co/Ti6Al4V composite coating were examined by scanning electron microscopy,energydispersive spectrum and X-ray diffraction(XRD).The hardness of different structures and abrasive resistance of composite coating were measured.The results show that the typical microstructure of LC WC7Co/Ti6Al4V composite coating can be classified into dissolved WC7Co composite structure and un-dissolved WC7Co structure.According to XRD results,there are Ti solid solution,W,TiC,VC,Co3W3C and secondary W2C in composite coating.The eutectic structure formed by the dissolved WC7Co particles consisted of W,W2C,TiC and P-Ti solid solution.The mean hardness of different structures exhibits a significant gradient distribution in composite coating.A reaction layer composed of TiC,W and W2C is also generated onto the interface between un-dissolved WC7Co particles and Ti6Al4V alloy matrix.The abrasive mechanisms of WC7Co/Ti6Al4V composite coating are mainly adhesive wear and oxidation wear during the dry sliding process.
文摘目的提高钛合金表面的耐磨性能。方法在TiB_2:TiC=1:3的粉末配比下,添加不同质量分数Y_2O_3稀土氧化物,制备成膏状混合粉末。采用5 k W横流CO_2激光器,在TC4钛合金表面激光熔覆掺Y_2O_3的TiB_2和TiC粉末,制备耐磨性复合涂层。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)对激光熔覆层的微观形貌和组织成分进行了分析;用显微维氏硬度计对熔覆层的显微硬度进行了测量;用万能摩擦磨损试验机对熔覆层的耐磨性能进行了测试。结果添加4%Y_2O_3后,熔覆层中部组织明显细化,结合区由致密组织结构转变为晶须网状结构;熔覆层的最高显微硬度为1404.6HV0.2,是基体的3.7倍;熔覆层的磨损量减少了66.67%,且其摩擦系数有明显的降低。结论添加4%Y_2O_3对TC4钛合金表面激光熔覆TiB/TiC复合熔覆层耐磨性能有显著的提高。