We propose a scheme to prepare the steady-state entanglement for two atoms, which are held in separate cavities that are coupled through a short optical fiber or optical resonator. The entangled steady-state with a hi...We propose a scheme to prepare the steady-state entanglement for two atoms, which are held in separate cavities that are coupled through a short optical fiber or optical resonator. The entangled steady-state with a high fidelity can be achieved even with a low cooperativity parameter, by making use of the driving laser fields. Such a cooling mechanism is based on a resonant laser pump of the unwanted ground states to the excited states, which finally decay to the desired steady-state.展开更多
We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and ...We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and phase space density are experimentally investigated.A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers.In a general estimation,an optimal value for each beam with a power of 9 W from the fiber laser is achieved.Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose–Einstein condensation with an optical dipole trap.展开更多
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB921601)the National Natural Science Foundation of China(Grant Nos.11374054,11305037,11347114,and 11247283)+1 种基金the Natural Science Foundation of Fujian Province of China(Grant No.2013J01012)the Fund from Fuzhou University(Grant Nos.022513,022408,and 600891)
文摘We propose a scheme to prepare the steady-state entanglement for two atoms, which are held in separate cavities that are coupled through a short optical fiber or optical resonator. The entangled steady-state with a high fidelity can be achieved even with a low cooperativity parameter, by making use of the driving laser fields. Such a cooling mechanism is based on a resonant laser pump of the unwanted ground states to the excited states, which finally decay to the desired steady-state.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61722507,61675121,61705123,62020106014,and 62011530047)+4 种基金the PCSIRT(Grant No.IRT-17R70)the 111 Project(Grant No.D18001)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)the Applied Basic Research Project of Shanxi Province,China(Grant Nos.201801D221004,201901D211191,and 201901D211188)the Shanxi 1331 KSC.
文摘We report on a research of the loading of ultracold sodium atoms in an optical dipole trap,generated by two beams from a high power fiber laser.The effects of optical trap light power on atomic number,temperature and phase space density are experimentally investigated.A simple theory is proposed and it is in good accordance with the experimental results of the loaded atomic numbers.In a general estimation,an optimal value for each beam with a power of 9 W from the fiber laser is achieved.Our results provide a further understanding of the loading process of optical dipole trap and laid the foundation for generation of a sodium Bose–Einstein condensation with an optical dipole trap.