期刊文献+
共找到279篇文章
< 1 2 14 >
每页显示 20 50 100
Laser direct writing of Ga_(2)O_(3)/liquid metal-based flexible humidity sensors 被引量:5
1
作者 Songya Cui Yuyao Lu +5 位作者 Depeng Kong Huayu Luo Liang Peng Geng Yang Huayong Yang Kaichen Xu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第7期30-39,共10页
Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible ... Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge.In this work,a wearable capacitive-type Ga_(2)O_(3)/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.Owing to the photothermal effect of laser,the Ga_(2)O_(3)-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19Ω·cm,while the untreated regions serve as active sensing layers in response to moisture changes.Under 95%relative humidity,the humidity sensor displays a highly stable performance along with rapid response and recover time.Utilizing these superior properties,the Ga_(2)O_(3)/liquid metal-based humidity sensor is able to monitor human respiration rate,as well as skin moisture of the palm under different physiological states for healthcare monitoring. 展开更多
关键词 laser direct writing liquid metal humidity sensors flexible electronics wearable sensors
下载PDF
Femtosecond laser direct writing of functional stimulus-responsive structures and applications 被引量:1
2
作者 Yuxuan Zhang Dong Wu +5 位作者 Yachao Zhang Yucheng Bian Chaowei Wang Jiawen Li Jiaru Chu Yanlei Hu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期375-414,共40页
Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable prope... Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment.Inspired by nature,researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate.Among many fabrication methods for stimulus-responsive structures,femtosecond laser direct writing(FsLDW)has received increasing attention because of its high precision,simplicity,true three-dimensional machining ability,and wide applicability to almost all materials.This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW.Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies,different stimulating factors that can trigger structural responses of prepared intelligent structures,such as magnetic field,light,temperature,pH,and humidity,are emphatically summarized.Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW,as well as the present obstacles and forthcoming development opportunities,are discussed. 展开更多
关键词 stimulus-responsive structures femtosecond laser direct writing laser–matter interaction multifunctionality
下载PDF
Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing 被引量:2
3
作者 Qilin Jiang Long Chen +8 位作者 Jukun Liu Yuchan Zhang Shian Zhang Donghai Feng Tianqing Jia Peng Zhou Qian Wang Zhenrong Sun Hongxing Xu 《Opto-Electronic Science》 2023年第1期11-22,共12页
This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LI... This paper reports the fabrication of regular large-area laser-induced periodic surface structures(LIPSSs)in indium tin oxide(ITO)films via femtosecond laser direct writing focused by a cylindrical lens.The regular LIPSSs exhibited good properties as nanowires,with a resistivity almost equal to that of the initial ITO film.By changing the laser fluence,the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of±10%.Furthermore,the average transmittance of the ITO films with regular LIPSSs in the range of 1200-2000 nm was improved from 21%to 60%.The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices-particularly in the near-infrared band. 展开更多
关键词 transparent nanowires periodic surface nanostructures femtosecond laser direct writing ITO film anisotropic electrical conductivity
下载PDF
Binary Laser Direct Writing System and Its Applications 被引量:7
4
作者 LI Feng you,LU Zhen wu,XIE Yong jun, ZHANG Dian wen (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130022, China) 《光学精密工程》 EI CAS CSCD 2001年第5期451-454,共4页
A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE’s) fabricated by applying laser direct writing system are presented. The fabrication techniques b... A new laser direct writing system is introduced and the potential application of the diffractive optical elements (DOE’s) fabricated by applying laser direct writing system are presented. The fabrication techniques by applying the laser direct writing are developed. Experimental results have been obtained by applying laser direct writing machine with line width of 5μm and 10μm. 展开更多
关键词 laser direct writing systems DIFFRACTIVE optical ELEMENTS (DOE) pho-tolithography
下载PDF
A direct laser-synthesized magnetic metamaterial for low-frequency wideband passive microwave absorption
5
作者 Yihe Huang Yize Li +10 位作者 Kewen Pan Yixian Fang Kai Chio Chan Xiaoyu Xiao Chao Wei Kostya S Novoselov John Gallop Ling Hao Zhu Liu Zhirun Hu Lin Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期667-680,共14页
Microwave absorption in radar stealth technology is faced with challenges in terms of its effectiveness in low-frequency regions.Herein,we report a new laser-based method for producing an ultrawideband metamaterial-ba... Microwave absorption in radar stealth technology is faced with challenges in terms of its effectiveness in low-frequency regions.Herein,we report a new laser-based method for producing an ultrawideband metamaterial-based microwave absorber with a highly uniform sheet resistance and negative magnetic permeability at resonant frequencies,which results in a wide bandwidth in the L-to S-band.Control of the electrical sheet resistance uniformity has been achieved with less than 5%deviation at 400Ωsq^(-1)and 6%deviation at 120Ωsq^(-1),resulting in a microwave absorption coefficient between 97.2%and 97.7%within a1.56–18.3 GHz bandwidth for incident angles of 0°–40°,and there is no need for providing energy or an electrical power source during the operation.Porous N-and S-doped turbostratic graphene 2D patterns with embedded magnetic nanoparticles were produced simultaneously on a polyethylene terephthalate substrate via laser direct writing.The proposed low-frequency,wideband,wide-incident-angle,and high-electromagnetic-absorption microwave absorber can potentially be used in aviation,electromagnetic interference(EMI)suppression,and 5G applications. 展开更多
关键词 laser direct writing degrees of crystallization Fe_(3)O_(4)nanoparticles wide bandwidth low frequency
下载PDF
Femtosecond-laser direct writing 3D micro/nano-lithography using VIS-light oscillator 被引量:2
6
作者 Antanas BUTKUS Edvinas SKLIUTAS +1 位作者 Darius GAILEVIČIUS Mangirdas MALINAUSKAS 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3270-3276,共7页
Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and app... Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine. 展开更多
关键词 laser direct writing two-photon polymerization multi-photon lithography 3D printing additive manufacturing SZ2080TM MICROSTRUCTURES NANOTECHNOLOGY
下载PDF
Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications 被引量:13
7
作者 Yiyuan Zhang Yunlong Jiao +5 位作者 Chuanzong Li Chao Chen Jiawen Li Yanlei Hu Dong Wu Jiaru Chu 《International Journal of Extreme Manufacturing》 2020年第3期42-62,共21页
manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel proc... manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel process,chemical vapor deposition,template method,and self-assembly).These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications,including self-cleaning surfaces,oil-water separation,and fog collection.This review presents the inherent relationship between natural organisms,fabrication methods,micro/nanostructures and their potential applications.Thereafter,we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces.Subsequently,we summarize a variety of typical bioinspired designs(e.g.lotus leaf,pitcher plant,rice leaf,butterfly wings,etc)for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology.Based on the principle of interfacial chemistry and geometrical optics,we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW.This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains. 展开更多
关键词 femtosecond laser direct writing multiscale micro/nanostructures extreme fabrication bioinspired applications
下载PDF
Laser direct writing derived robust carbon nitride films with efficient photon-to-electron conversion for multifunctional photoelectrical applications 被引量:1
8
作者 Haotian Tan Wenping Si +7 位作者 Wei Peng Yuqing Wang Daolan Liu Liqun Wang Chongyun Jiang Lu Di Ji Liang Feng Hou 《Carbon Energy》 SCIE CAS 2022年第6期1228-1241,共14页
Carbon nitride,an emerging polymeric semiconductor,has attracted attention in research ranging from photocatalysis to photodetection due to its favorable visible light response and high physicochemical stability.For i... Carbon nitride,an emerging polymeric semiconductor,has attracted attention in research ranging from photocatalysis to photodetection due to its favorable visible light response and high physicochemical stability.For its practical device application,the fabrication of high-quality carbon nitride films on substrates is essential.However,conventional methodologies to achieve high polymerization of carbon nitride are often accompanied by its decomposition,significantly compromising the film quality.Herein,we report an ultrafast fabrication of carbon nitride film by laser direct writing(LDW).The instantaneous high temperature and pressure during LDW can efficiently boost the polymerization of carbon nitride and suppress its decomposition,resulting in high-quality carbon nitride film with excellent mechanical stability with the substrate.Due to the efficient photon-to-electron conversion,it exhibits an outstanding photoelectrochemical water splitting and optoelectronic detection capability,even under strong acid/alkaline conditions.This study thus offers a facile and efficient LDW strategy for the rapid fabrication of carbon nitride film photoelectrodes,demonstrating its great feasibility in multifunctional photoelectrical applications,including but not limited to photoelectrochemical water splitting and optoelectronic detection. 展开更多
关键词 carbon nitride laser direct writing PHOTODETECTORS photoelectrochemical water splitting
下载PDF
Self-limiting laser crystallization and direct writing of 2D materials 被引量:1
9
作者 Zabihollah Ahmadi Baha Yakupoglu +2 位作者 Nurul Azam Salah Elafandi Masoud Mahjouri-Samani 《International Journal of Extreme Manufacturing》 2019年第1期139-144,共6页
Direct growth and patterning of atomically thin two-dimensional(2D)materials on various substrates are essential steps towards enabling their potential for use in the next generation of electronic and optoelectronic d... Direct growth and patterning of atomically thin two-dimensional(2D)materials on various substrates are essential steps towards enabling their potential for use in the next generation of electronic and optoelectronic devices.The conventional gas-phase growth techniques,however,are not compatible with direct patterning processes.Similarly,the condensed-phase methods,based on metal oxide deposition and chalcogenization processes,require lengthy processing times and high temperatures.Here,a novel self-limiting laser crystallization process for direct crystallization and patterning of 2D materials is demonstrated.It takes advantage of significant differences between the optical properties of the amorphous and crystalline phases.Pulsed laser deposition is used to deposit a thin layer of stoichiometric amorphous molybdenum disulfide(MoS2)film(∼3 nm)onto the fused silica substrates.A tunable nanosecond infrared(IR)laser(1064 nm)is then employed to couple a precise amount of power and number of pulses into the amorphous materials for controlled crystallization and direct writing processes.The IR laser interaction with the amorphous layer results in fast heating,crystallization,and/or evaporation of the materials within a narrow processing window.However,reduction of the midgap and defect states in the as crystallized layers decreases the laser coupling efficiency leading to higher tolerance to process parameters.The deliberate design of such laser 2D material interactions allows the selflimiting crystallization phenomena to occur with increased quality and a much broader processing window.This unique laser processing approach allows high-quality crystallization,direct writing,patterning,and the integration of various 2D materials into future functional devices. 展开更多
关键词 2D materials direct laser writing laser crystallization
下载PDF
Memristive feature and mechanism induced by laser-doping in defect-free 2D semiconductor materials
10
作者 Xiaoshan Du Shu Wang +11 位作者 Qiaoxuan Zhang Shengyao Chen Fengyou Yang Zhenzhou Liu Zhengwei Fan Lijun Ma Lei Wang Lena Du Zhongchang Wang Cong Wang Bing Chen Qian Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期85-91,共7页
Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moder... Memristors as non-volatile memory devices have gained numerous attentions owing to their advantages in storage,in-memory computing, synaptic applications, etc. In recent years, two-dimensional(2D) materials with moderate defects have been discovered to exist memristive feature. However, it is very difficult to obtain moderate defect degree in 2D materials, and studied on modulation means and mechanism becomes urgent and essential. In this work, we realized memristive feature with a bipolar switching and a configurable on/off ratio in a two-terminal MoS_(2) device(on/off ratio ~100), for the first time, from absent to present using laser-modulation to few-layer defect-free MoS_(2)(about 10 layers), and its retention time in both high resistance state and low resistance state can reach 2×10^(4) s. The mechanism of the laser-induced memristive feature has been cleared by dynamic Monte Carlo simulations and first-principles calculations. Furthermore, we verified the universality of the laser-modulation by investigating other 2D materials of TMDs. Our work will open a route to modulate and optimize the performance of 2D semiconductor memristive devices. 展开更多
关键词 2D-material memristor laser doping laser direct writing memristive mechanism
下载PDF
Laser Direct Writing of Ag Films from Solution on Si Substrate
11
作者 KeSUN CaibeiZHANG YanZHAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期634-636,共3页
Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. Th... Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energyA absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films. 展开更多
关键词 Pulsed Nd:YAG laser laser direct writing Ag deposited film Si substrate
下载PDF
All laser direct writing process for temperature sensor based on graphene and silver
12
作者 Qi Li Ruijie Bai +1 位作者 Lianbo Guo Yang Gao 《Frontiers of Optoelectronics》 EI CSCD 2024年第1期45-55,共11页
A highly sensitive temperature sensing array is prepared by all laser direct writing(LDW)method,using laser induced silver(LIS)as electrodes and laser induced graphene(LIG)as temperature sensing layer.A finite element... A highly sensitive temperature sensing array is prepared by all laser direct writing(LDW)method,using laser induced silver(LIS)as electrodes and laser induced graphene(LIG)as temperature sensing layer.A finite element analysis(FEA)photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties,providing guidance for laser processing parameters selection with laser power of 1–5 W and laser scanning speed(greater than 50 mm/s).The deviation of simulation and experimental data for widths and thickness of LIG are less than 5%and 9%,respectively.The electrical properties and temperature responsiveness of LIG are also studied.By changing the laser process parameters,the thickness of the LIG ablation grooves can be in the range of 30–120μm and the resistivity of LIG can be regulated within the range of 0.031–67.2Ω・m.The percentage temperature coefficient of resistance(TCR)is calculated as−0.58%/°C.Furthermore,the FEA photothermal model is studied through experiments and simulations data regarding LIS,and the average deviation between experiment and simulation is less than 5%.The LIS sensing samples have a thickness of about 14μm,an electrical resistivity of 0.0001–100Ω・m is insensitive to temperature and pressure stimuli.Moreover,for a LIS-LIG based temperature sensing array,a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli,the temperature measurement difference is decreased from 11.2 to 2.6°C,indicating good accuracy for temperature measurement. 展开更多
关键词 laser direct writing Temperature sensor Finite element analysis laser induced graphene laser induced silver
原文传递
Transient features of graphitization and nitrogen-vacancy color centers in a diamond fabricated by localization femtosecond laser direct writing
13
作者 CUI Lin YIN SiYu +1 位作者 HU ZiFan WANG Lei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第8期2530-2536,共7页
Femtosecond laser direct writing provides an efficient approach to fabricating single nitrogen vacancy(NV) color centers with a relatively high yield. Different from previously reported NV color centers with a random ... Femtosecond laser direct writing provides an efficient approach to fabricating single nitrogen vacancy(NV) color centers with a relatively high yield. Different from previously reported NV color centers with a random distribution in a bulk diamond or nanocrystals, this gives an opportunity to study the photophysical properties of single NV color centers with precise numbers and positions. However, ultrafast studies on single NV color centers prepared by localization femtosecond laser direct writing are still rare, especially for the graphitization inside a diamond and its relationship with single NV color centers. Here, we report the broadband transient absorption(TA) spectroscopic features of the graphitization and NV color centers in a diamond fabricated by localization femtosecond laser direct writing at room temperature under 400 nm excitation. In comparison with the graphene oxide film, the bleaching features of the graphitization point array in a diamond are similar to reduced graphene oxide,accompanied by excited state absorption signals from local carbon atom vacancy defects in graphene-like structures induced by laser writing. On the other hand, transient features of laser processing array containing single NV color centers with a yield of~50% are different from those of the graphitization point array. Our findings suggest that for ultrashort pulse processing of diamonds, broadband TA spectral signals are sensitive to the surrounding atomic environment of processing sites, which could be applied to laser writing point defects in other materials used as solid-state single photon sources. 展开更多
关键词 nitrogen-vacancy color center GRAPHITIZATION DIAMOND femtosecond laser direct writing ultrafast spectroscopy
原文传递
Direct laser writing on halide perovskites:from mechanisms to applications
14
作者 Yuhang Sheng Xiaoming Wen +1 位作者 Baohua Jia Zhixing Gan 《Light(Advanced Manufacturing)》 2024年第1期93-114,共22页
Metal halide perovskites have emerged as game-changing semiconductor materials in optoelectronics.As an efficient micro-/nano-manufacturing technology,direct laser writing(DLW)has been extensively used to fabricate pa... Metal halide perovskites have emerged as game-changing semiconductor materials in optoelectronics.As an efficient micro-/nano-manufacturing technology,direct laser writing(DLW)has been extensively used to fabricate patterns,micro/nanostructures,and pixel arrays on perovskites to promote their optoelectronic applications.Owing to the unique ionic properties and soft lattices of perovskites,DLW can introduce rich light-matter interactions,including laser ablation,crystallisation,ion migration,phase segregation,photoreaction,and other transitions,which enable diverse functionalities in addition to the intrinsic properties of perovskites.Based on their patterned structures,perovskites have numerous applications in displays,optical information encryption,solar cells,light-emitting diodes,lasers,photodetectors,and planar lenses,which are comprehensively discussed in this review.Finally,we discuss the challenges that must be addressed for the future development of this fascinating field. 展开更多
关键词 direct laser writing Halide perovskites laser-matter interactions Optoelectronics
原文传递
空间整形飞秒激光高效制备纳米光栅
15
作者 赵昶栋 刘永刚 +6 位作者 魏文卿 张航 邓琥 刘泉澄 胡建波 尚丽平 李占锋 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期1-8,共8页
针对常规物镜聚焦飞秒激光光斑较小,难以单次直写加工成型大面积纳米光栅结构的问题,提出了利用空间狭缝整形的飞秒激光脉冲直写方法。通过开展单晶硅表面纳米光栅结构对加工系统的参数依赖关系研究,获得入射整形飞秒激光能量密度8.00μ... 针对常规物镜聚焦飞秒激光光斑较小,难以单次直写加工成型大面积纳米光栅结构的问题,提出了利用空间狭缝整形的飞秒激光脉冲直写方法。通过开展单晶硅表面纳米光栅结构对加工系统的参数依赖关系研究,获得入射整形飞秒激光能量密度8.00μJ/cm^(2)、扫描速度9 mm/s、狭缝宽度0.40 mm的优化条件。采用SEM、AFM等手段对光栅进行微观表征,结果表明,单次扫描所制备的纳米光栅结构具有极高的宽度(41.20μm),说明提出的方法可以显著提升一次成型大面积纳米光栅结构的制备效率。 展开更多
关键词 飞秒激光直写 空间整形 纳米光栅 纵横比
下载PDF
激光表面强化与微纳制造技术研究进展
16
作者 朱立华 于文慧 +7 位作者 亓东锋 王志文 王宗申 杨兵 刘明明 朱建 吴永玲 郑宏宇 《材料保护》 CAS CSCD 2024年第8期130-146,共17页
我国激光表面强化技术和表面微纳结构制造技术虽然起步较晚,但近年来发展十分迅速,已在激光与物质瞬态作用基础理论、激光冲击强化、激光表面熔凝、激光表面熔覆、激光表面直写、激光诱导表面微结构等方面取得了重要进展;但是,与对激光... 我国激光表面强化技术和表面微纳结构制造技术虽然起步较晚,但近年来发展十分迅速,已在激光与物质瞬态作用基础理论、激光冲击强化、激光表面熔凝、激光表面熔覆、激光表面直写、激光诱导表面微结构等方面取得了重要进展;但是,与对激光技术研究起步更早的国家相比,我国仍然存在缺乏首创工艺技术、激光与物质瞬态作用基础理论研究薄弱等问题,在工业技术应用和装备研制方面也存在一定差距。综述了激光表面强化与微纳制造技术的研究进展。随着微纳结构制造产业的不断发展进步、新合金新材料应用需求的增加以及环保要求的提高,激光表面强化和激光表面微纳结构制造技术会向着效率更高、精度更高、性能更高的方向继续迈进,在实际生产中的应用也将得到进一步的发展。 展开更多
关键词 激光表面强化 微纳制造 激光冲击强化 激光表面熔凝 激光表面熔覆 激光表面直写 激光诱导表面微结构
下载PDF
激光直写CdS/Graphene的氨基甲酸乙酯分子印迹光电化学传感器
17
作者 林歆彤 赖紫萱 +4 位作者 雷宇芬 朱金满 邱桢丽 陈毅挺 叶晓霞 《井冈山大学学报(自然科学版)》 2024年第2期28-35,共8页
将分子印迹(Molecular Imprinting Polymer)和光电化学(Photoelectrochemical)传感器相结合,并利用激光直写技术生成CdS/Graphene,构建氨基甲酸乙酯分子印迹光电化学传感器。利用溶液聚合法制备氨基甲酸乙酯分子印迹聚合物,探究了分子... 将分子印迹(Molecular Imprinting Polymer)和光电化学(Photoelectrochemical)传感器相结合,并利用激光直写技术生成CdS/Graphene,构建氨基甲酸乙酯分子印迹光电化学传感器。利用溶液聚合法制备氨基甲酸乙酯分子印迹聚合物,探究了分子印迹聚合物中各组分的摩尔比等因素对氨基甲酸乙酯的光电流信号的影响。实验结果表明,所设计的传感器对氨基甲酸乙酯浓度在0.0001~0.0075 mmol/L之间呈现良好的线性关系,检测限为0.08μmol/L,且其线性相关系数R^(2)为0.99184。 展开更多
关键词 分子印迹 光电化学传感器 激光直写 氨基甲酸乙酯
下载PDF
High-rate metal-free MXene microsupercapacitors on paper substrates
18
作者 Han Xue Po‐Han Huang +11 位作者 Lee‐Lun Lai Yingchun Su Axel Strömberg Gaolong Cao Yuzhu Fan Sergiy Khartsev Mats Göthelid Yan‐Ting Sun Jonas Weissenrieder Kristinn BGylfason Frank Niklaus Jiantong Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期94-104,共11页
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(... MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on paper.Herein,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing.With a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper MSCs.Furthermore,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive performance.The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics. 展开更多
关键词 direct ink writing femtosecond laser scribing MXene on-paper microsupercapacitors PEDOT:PSS ultrahigh rate capability
下载PDF
基于飞秒激光微加工的温度补偿型高灵敏度光纤光栅传感器的实验教学研究
19
作者 李宏韬 刘雨轩 +3 位作者 王伟胜 戴娇研 吕亮 孙火姣 《大学物理实验》 2024年第4期58-62,共5页
在传统的大学物理实验教学中,长周期光纤光栅的折射率灵敏度较低且温度灵敏度通常为正值,与布拉格光纤光栅相结合不能很好地实现温度串扰的消除。因此,我们利用飞秒激光直写技术制备出一种微纳光纤布拉格光栅(mFBG)与微纳小长周期光纤光... 在传统的大学物理实验教学中,长周期光纤光栅的折射率灵敏度较低且温度灵敏度通常为正值,与布拉格光纤光栅相结合不能很好地实现温度串扰的消除。因此,我们利用飞秒激光直写技术制备出一种微纳光纤布拉格光栅(mFBG)与微纳小长周期光纤光栅(SP-mFLPG)级联的温度补偿高灵敏度光纤光栅传感器。这种传感器体积小巧、稳定性高,折射率灵敏度高达759.02 nm/RIU,同时具备温度补偿特性等优势。对于本次传感器的制备实验教学,有助于本科基础教学授课,为创新性教学实验带来更多可能性,学生将参与微纳光纤器件的制作与测试实验,这将有助于他们提升动手能力、专注力以及科研素养。更重要的是,学生们能够涉足创新性的光纤结构设计领域,从而激发其对新型光纤器件和传感应用的兴趣,为其未来学习和深造奠定坚实的基础。 展开更多
关键词 微纳小长周期光纤光栅 微纳布拉格光纤光栅 飞秒激光直写技术 温度补偿
下载PDF
飞秒激光直写光纤光栅进展及光谱优化方法研究
20
作者 朱玉雪 陈东营 +1 位作者 赵强 曲轶 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第8期2101-2110,共10页
光纤光栅传统的制备方法为紫外曝光法和CO_(2)激光法。紫外曝光法具有操作简单,容易对准等优势,但通常需要对光纤进行载氢增敏处理且高温下折射率调制容易被擦除,难以在极端环境下实现应用价值。CO_(2)激光法通常用于长周期光纤光栅的制... 光纤光栅传统的制备方法为紫外曝光法和CO_(2)激光法。紫外曝光法具有操作简单,容易对准等优势,但通常需要对光纤进行载氢增敏处理且高温下折射率调制容易被擦除,难以在极端环境下实现应用价值。CO_(2)激光法通常用于长周期光纤光栅的制备,测量灵敏度容易受到高温的影响。针对传统光纤光栅制备方法存在的问题,飞秒激光刻写技术随之出现,大致被分为飞秒激光直写法、飞秒激光全息干涉法和飞秒激光相位掩模法。其中,飞秒激光直写法具备刻写效率高、脉冲能量要求低等特点,还能根据传感需求调制中心波长、光栅间距、光栅长度等。此外,飞秒激光直写法的实验装置简单,不需要相位掩膜板控制光栅周期。飞秒激光直写的光纤光栅具有折射率调制灵活、高温性能好、机械强度高等优点,已在传感器、激光器等多种光学器件中广泛应用。文章简要介绍飞秒激光直写光纤光栅的工作原理及典型写制方法,总结了飞秒激光逐点、逐线、逐面三种直写方法的国内外研究进展;从制备效率、光谱质量等方面对比分析了三种直写方法的优缺点;详细分析和讨论了光谱优化方法,包括激光脉冲能量、光栅长度、光纤类型、光束整形和光栅切趾,为获得高反射峰、窄3 dB带宽、低插入损耗的高质量光纤光栅奠定基础。最后展望了飞秒激光直写光纤光栅的发展趋势和应用前景。 展开更多
关键词 光纤光栅 飞秒激光直写法 光谱优化
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部