Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat...Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.展开更多
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph...NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.展开更多
The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,rese...The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,research on the additive manufacturing of ultrahigh-strength titanium alloys is still limited.The mechanisms of microseg-regation for high alloying elements and poor plasticity are still not clear.In this study,an ultrahigh-strength titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb(TB18)was prepared using two methods:laser direct energy deposi-tion(LDED)and forging.The LDEDed alloy contains three zones with similar grain morphologies but different microstructure.The microsegregation of the alloy is limited due to the rapid solidification and almost eliminated after the thermal cycle and solution treatment.With stress relief treatment,the LDEDed alloy exhibits anisotropic mechanical properties.After solution and aging treatments,its ultimate strength is enhanced;however,its plas-ticity is relatively lower than that of the wrought alloy with equally high strength.The excellent balance of the strength and plasticity of the wrought alloy can be ascribed to the formation of𝛼WGB and multiscale𝛼laths,which provides enlightenment for optimizing the properties of the LDEDed alloy.展开更多
Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to ach...Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to achieve𝛾γ′phase.However,conventional heat treatment methods for wrought Inconel 718 may not be suitable for Inconel 718 fabricated by laser directed energy deposition(LDED)due to its unique microstructure formed during the rapid solidification process.There has been a lack of investigation in heat treatments for Inconel 718 fabricated by this process,specifically around the impact of aging parameters on this alloy.In this study,the effects of aging parameters were studied by performing seven different heat treatments,including solutionising and aging treatments.Our results indicate that for LDED Inconel 718,a high temperature solution treatment of 1100℃for 1 h followed by single aging at 650℃for 20 h achieved a tensile strength and elongation of 1247 MPa and 23%,respectively.Further,results indicated that even with a shorter aging time of 10 h,γ′phase was found to be of comparable size to the standard double aged treatment.展开更多
Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high...Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED.展开更多
Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building d...Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.展开更多
CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with inc...CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.展开更多
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金the financial support of the Hunan Innovation Platform and Talent Plan(2022RC3033)Natural Science Foundation of Shandong Province(ZR2020ZD04)Ganzhou Science and Technology Planning Project(Grant No.Ganshikefa[2019]60)。
文摘Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.
基金Project(2020JJ2046)supported by the Science Fund for Hunan Distinguished Young Scholars,ChinaProject(S2020GXKJGG0416)supported by the Special Project for Hunan Innovative Province Construction,China+1 种基金Project(2018RS3007)supported by the Huxiang Young Talents,ChinaProject(GuikeAB19050002)supported by the Science Project of Guangxi,China。
文摘NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.
基金supported by National Natural Science Foundation of China(Grant No.52071005)National Science and Technology Sup-porting Project of China(Grant No.JPPT-135-GH-2-036)Funda-mental Research Funds for the Central Universities of China(Grant No.030810).
文摘The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,research on the additive manufacturing of ultrahigh-strength titanium alloys is still limited.The mechanisms of microseg-regation for high alloying elements and poor plasticity are still not clear.In this study,an ultrahigh-strength titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb(TB18)was prepared using two methods:laser direct energy deposi-tion(LDED)and forging.The LDEDed alloy contains three zones with similar grain morphologies but different microstructure.The microsegregation of the alloy is limited due to the rapid solidification and almost eliminated after the thermal cycle and solution treatment.With stress relief treatment,the LDEDed alloy exhibits anisotropic mechanical properties.After solution and aging treatments,its ultimate strength is enhanced;however,its plas-ticity is relatively lower than that of the wrought alloy with equally high strength.The excellent balance of the strength and plasticity of the wrought alloy can be ascribed to the formation of𝛼WGB and multiscale𝛼laths,which provides enlightenment for optimizing the properties of the LDEDed alloy.
文摘Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to achieve𝛾γ′phase.However,conventional heat treatment methods for wrought Inconel 718 may not be suitable for Inconel 718 fabricated by laser directed energy deposition(LDED)due to its unique microstructure formed during the rapid solidification process.There has been a lack of investigation in heat treatments for Inconel 718 fabricated by this process,specifically around the impact of aging parameters on this alloy.In this study,the effects of aging parameters were studied by performing seven different heat treatments,including solutionising and aging treatments.Our results indicate that for LDED Inconel 718,a high temperature solution treatment of 1100℃for 1 h followed by single aging at 650℃for 20 h achieved a tensile strength and elongation of 1247 MPa and 23%,respectively.Further,results indicated that even with a shorter aging time of 10 h,γ′phase was found to be of comparable size to the standard double aged treatment.
基金supported by National Natural Science Founda-tion of China(Grant.Nos.51805070,51790172,52175291)Funda-mental Research Funds for the Central Universities of China(Grant.Nos.DUT22YG210,DUT22LAB117)+1 种基金Science Center for Gas Turbine Project of China(Grant.No.P2022-B-IV-012-001)Shenzhen Sci-ence and Technology Innovation Commission of China(Grant.No.JCYJ20210324115413036).
文摘Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED.
基金supported by the National Key Technologies R&D Program (Nos. 2016YFB1100102, 2018YFB1106003).
文摘Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.
基金financially supported by the National Natural Science Foundation of China(NSAF)joint Fund(Grant No.U2030102)the National Natural Science Foundation of China(Grant No.52071124)。
文摘CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.